Data Parallel Data Flow in Repa 4

Ben Lippmeier

FP-Syd 2015/2/25

. éﬁ:..:zj

-
-~
.
>

kr: CCGeneric.

f
%..

o L

: R
f,’, ‘; t‘_

,ﬁmwr_.x t) j’ ;*\r

w " 3 .2

INntro demo.

> import Data.Repa.Flow as F

> ws <= F.fromFiles
[“/usr/share/dict/words”
, “/usr/share/dict/connectives”]
F.sourcelLines

> F.sourcesArity ws A flow consists of a bundle of individual
streams. We create a bundle two

2 stream sources, one for each file.
> 1type ws
ws :: Sources N (Array F Char)

The layout name controls the
the representation of the chunks that
make up the streams.

N :: Name N (Nested Arrays)
F :: Name F (Foreign Arrays)

> :type N
> :type F

> print F.defaultChunkSize
65536

> 1mport Data.Repa.Flow.Default.Debug
> more 0 ws

Just [MAH’ llall’ llaall’ llaa'Lll’ llaa'l-iill’ llaamll’
“Aani', “aardvark", “aardwolf", “Aaron", ..

The more function shows the first few elements
from the front of the next chunk. The streams are
stateful, so pulling a chunk consumes it.

> more’ 0 100 ws

Just [“arbitrament”, “arbitrarily",
“arbitrariness", "“arbitrary", “arbitrate”, ..

> moret 1 ws

“the”
llo.f"
“and”
i
lla"
“inm
“that”
il - 144

15
llwasll

Show the next chunk of the second stream
as a table.

> import Data.Char

> up <- map_1 B (mapS U toUpper) ws
> more 0 up

Just [“BARRISTRESS", “BARROOM", “BARROW",
“BARROWFUL"™, “BARROWIST", “BARROWMAN",

“BARRULEE", “BARRULET", “BARRULETY", “BARRULY",
“BARRY", “BARRY", “BARSAC", “BARSE", ..

Apply a function to every element of the stream.
B = Boxed. U = Unboxed. map(S) ~ Sequential.
map(_i) ~ input version (More on this later).

> 1type up

up :: Sources B (Array U Char)

> more 0 up

Just [“BARRISTRESS", “BARROOM", “BARROW",
“BARROWFUL"™, “BARROWIST", “BARROWMAN",
“BARRULEE", “BARRULET", “BARRULETY", “BARRULY",
“BARRY", “BARRY", “BARSAC", “BARSE", ..

> more 1 up

JUSt [llTHE"’ llOFII’ llANDII’ llTOII’ llAII’ llINII’
llTHATII’ llISII’ llWASII’ llHEII’ llFORII’ llITII’

- Flows are data parallel, so applying a function like
fromFiles , .
map_i transforms all streams in the bundle.
map

v \4 \4

: 'mkdir -p tmp

> out <- toFiles ["tmp/outl.txt"
, tmp/out2.txt"]
$ sinkLines B U

> 1type out

out :: Sinks B (Array U Char)

Now we have a bundle of stream sinks.
Data pushed into the sinks gets written out
to the above files as text lines.

> :type drainP

drainP :: Source 1 a —> Sinks 1 a —> I0 ()

Drain all data from the sources into
the sinks, in parallel.

>

- e
‘ - -

am .

TR l.‘: b 2% ian] '11 b e e, A R “_ RS -—-"‘_, - ._
g e A Tes S w e imaget Axel falerner ik CC:NC-S AL ST

https://www.flickr.com/photos/ataferner/

oull from output l +(L push to Input
IﬂdUCeS map_i map @) Induces
oull from input l (L— push to output
|
“oully” “pushy”
e D
map 1 :: Name 12 -> (a -> b)
-> Sources 11 a -> m (Sources 12 b)
map O :: Name 12 -> (a -> b)

-> Sinks 11 b -> m (Sinks 12 a)

“contramap”

module Data.Repa.Flow.Generic where

stream index. =~ Monad glement type

/

data Sources 1 m e
= Sources
{ sourcesArity
, sourcesPull

->m ()}

=

data Sinks 1 m e
= Sinks
{ sinksArity :
, sinksPush :
, SinksEject :

1 ->e ->m ()
i->m ()}

module Data.Repa.Flow.Chunked where
import Data.Repa.Flow.Generic as G

type Sources 1 a

type Sinks

1

a

= G.Sources Int IO (Array 1l a)

= G.Sinks Int IO (Array 1 a)

The repa-flow packages defines
generic flows, then various instances
with a more specific/simpler API.

. Keys
groups_1 l Y

:: Name LGrp groups 1
-> Name lLen + | (keys, lens)
-> (a —> a —> Bool)

-> Sources Val a
-> I0 (Sources (T2 1Grp lLen) (a, Int))

> tolListl 0 =<< groupsBy_1 U U (==
=<< fromList U 1 “waabbbbllee”

Just [(‘w’, 1), (‘a’', 2)
, (‘b’, 4), (‘U', 2), (‘e’, 2)]

foldGroupsBy_1
:: Name 1lGrp —> Name 1Res &eys //alues
=> (n —> n —> Bool)

-> (a ->b —> b) foldGroupsBy 11
-> b +] (keys, results)
-> Sources 1Seg n

-> Sources LVal a
-> I0 (Sources (T2 1Grp 1Res) (n, b))

> sKeys <- fromList U 1 "waaaabllle"
> sVals <- fromList U 1 [10, 20, 30, 40, 50 ..
> tolListl 0O
=<< map_1 U (\(key, (acc, n)) -> (key, acc / n))
=<< foldGroupsBy 1 U U (==
(\x (acc, n) —> (acc + x, n + 1))
(0, 0) sKeys sVals

Just [('w’, 10.0), ('a’, 35.0), ('b’, 60.0) ..

NSNS

OK foldGroups ii foldGroups oo Buffers

g b
Ny NS

Blocks foldGroups xx foldGroups io QK

!l (L
foldGroups 11 :: .. -> Src k —> Src a -> Src (k, b)
foldGroups oo :: .. =-> Snk k —> Snk a -> Snk (k, b)
foldGroups xx :: .. => Src k —> Snk a -> Src (k, Db)
foldGroups 1o :: .. -> Src k —> Snk a -> Snk (k, b)

drain = Dbuffer

deal o
(Int == a —> I0 ())

e (spill function)
—> Sinks Int IO0 a

(output)
—> I0 (Sinks () IO (Array 1 a))
uffish | thought he stood
vorpal | blade | snicker | snack [burbled
1
+1 1
O L-a»spMed
deal o

uffish

vorpal

thought

blade

he

snicker

stood

snack

distribute o

1+ Name 1Src

—> (Int —> Array 1Dst a —> I0 ())

—> Sinks Int IO (Array 1Dst a)

—> JI0 (Sinks () IO (Array 1Src (Int, a)))

0, ‘a’) (1, ‘D) (2, ‘c)) O, ‘d’) 0, ‘c’)
0, ‘A) (3, ‘B’ (3, ‘C’) 4, E')

+n1 \—-‘
O spilled

distribute o

11

adC” “b” “C” (1%1)
“A” 1%L 1%L “BC”

funnel 1 funnel o

| |

naturally sequential naturally concurrent
read from the input streams iInput streams are contending
one after the other for a shared output

controlled order of consumption uncontrolled order of consumption
drain entire stream first, elements pushed in
or round robin element-wise non-deterministic order

shuffleP

add type of shuffle: ££ ------- £ -

k. flickr. OC-NG-SA.

repa-flow (CPS fusion)

T

repa-array (delayed array fusion)

N

repa-stream repa-eval

(stream / “chain” fusion) (parallel gang management)

Code exploration.

OV o8 s DRy e e
‘S~ ,." ! ‘-r:-'.__ ...T'\-"'-;."mv.
. ‘,&_ r;og .':’A'. 3

[S
HUPRE
g
Fig= N
£

.,

A

3R
"" s
ol

SR
AL s L
) q.-’? g f}:z e
1Y

3

-
N

)

i

g :

conduit - Michael Snoyman

eftovers INPUt elems output elems

upstream result
\ monad

data Pipe 1 i o umr 4——‘ result
= HaveOutput (Pipe 1 1 oumyr) (m ()) o
| NeedInput (i -> Pipe 1 i o u m r)
(u -=> Pipe 1 1 o umr)
Done r
PipeM (m (Pipe 1 1 o umr))
Leftover (Pipe 1 1 oumr))

Pipe Is an instance of Monad.
Data can flow both ways through the pipe, and yield a final result.
Single stream, single element at a time.
Individual Sources created by ‘yield’ action.

e Combine pipes/conduits with fusion operators.

pipes — Gabriel Gonzelez

upstream downstream

input and output input and output underlying monad

~N\\ ./ o

data Proxy a a’ b’ b m r

Request a’ (a -> Proxy a’ a b’ b m r)
Respond b (b’ -> Proxy a’ a b’ b m r)
M (m (Proxy a’ a b’ bmr))
Pure r

e Proxy / Pipe is an instance of Monad.
e Data can flow both ways through the pipe, and yield a final result.

machines - Edward Kmett

newtype MachineT m k o
= MachineT
{ runMachine :: m (Step k o (MachineT m k 0))

type Machine k o
= forall m. Monad m => MachineT m k o

type Process a b Machine (Is a) b)

forall k. Machine k b

type Source b

e | ike streams as used in Data.Vector stream fusion,
except the step function returns a whole new Machine (stream)

e Clean and general API, but not sure if it supports array fusion.
Machines library does not seem to attempt fusion.

repa-flow vs others

e Repa flow provides chunked, data parallel datalbase-like
operators with a straightforward API.

e Sources and Sinks are values rather than computations.
The “Pipe” between them created impilicitly in 1O land.

e AP| focuses on simplicity and performance via stream and
array fusion, rather than having the most general API.

e Suspect we could wrap single-stream Repa flow
operators as either Pipes or Conduits, but neither of the
former seem to naturally support data parallel flows.

whence

@]
./
‘e
B

x-quality, active development

code that’s tr

€

but still some

1]

e should work ok,

ISSINg components

https://github.com/DDCSF/repa

