
Fluid Beamer

Ben Lippmeier
University of New South Wales
Dorkbot 2012/08/28

Thursday, 30 August 2012

Thursday, 30 August 2012

Jos Stam’s Stable Fluids

• Fast, real-time fluid flow simulation algorithm.

• Intended for games and animations,
 instead of accurate engineering simulation.

• Stable at arbitrary time steps.

demo: ./Main -scale 3 -size 200 200 -visc 0 -diff 0 +RTS -N2 -qa -qg

Thursday, 30 August 2012

“Smoke in a box”

Thursday, 30 August 2012

“Smoke in a box”

0 0 0 0 1 0 0 0 0 0

0 0 0 1 2 2 2 0 0 0

0 0 1 2 4 4 3 2 0 0

0 1 3 4 5 5 4 2 0 0

1 4 4 6 6 4 3 2 0 0

0 0 2 3 6 3 2 0 0 0

0 0 0 2 2 2 2 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

density field
Thursday, 30 August 2012

“Smoke in a box”

velocity field
Thursday, 30 August 2012

Processes

density

velocity

• The density field diffuses.

• The velocity field diffuses.

• The velocity field moves the density field.

• The velocity field moves itself.

demo: ./Main -scale 3 -size 200 200 -visc 0 -diff 0 +RTS -N2 -qa -qg

Thursday, 30 August 2012

Density Diffusion

0 2 1

4 5 2

6 3 1

2 3 2

4 4 3

5 4 1

step

Thursday, 30 August 2012

Density Diffusion

0 2 1

4 5 2

6 3 1

2 3 2

4 4 3

5 4 1

step

Thursday, 30 August 2012

Density Diffusion

0 2 1

4 5 2

6 3 1

2 3 2

4 4 3

5 4 1

step

u’x,y = ux,y
 + a (ux-1,y + ux+1,y + ux,y-1 + ux,y+1
 - 4 * ux,y)

Thursday, 30 August 2012

Stability

demo: ./Main -unstable -diff 0.001 -delta 0.02 -user-dens 500

-delta 0.020 -delta 0.025 -delta 0.027

Thursday, 30 August 2012

Density Diffusion (unstable version)

0 2 1

4 5 2

6 3 1

2 3 2

4 4 3

5 4 1

step

u’x,y = ux,y
 + a (ux-1,y + ux+1,y + ux,y-1 + ux,y+1
 - 4 * ux,y)

Thursday, 30 August 2012

Density Diffusion (stable version)

0 2 1

4 5 2

6 3 1

2 3 2

4 4 3

5 4 1

step

u’x,y
 = (ux,y
 + a (u’x-1,y + u’x+1,y + u’x,y-1 + u’x,y+1))
 / (1 + 4 * a)

Thursday, 30 August 2012

Velocity Diffusion (viscosity)

step

• Same idea as density diffusion.

• Average out components of velocity vector
 among adjacent cells.

Thursday, 30 August 2012

Density Advection

step

• The velocity field moves the density field.

Thursday, 30 August 2012

Velocity Advection

step

• The velocity field moves itself.

Thursday, 30 August 2012

Processes (again)

density

velocity

• The density field diffuses.

• The velocity field diffuses.

• The velocity field moves the density field.

• The velocity field moves itself.

Thursday, 30 August 2012

Astro Elk

• Set diffusion and viscosity to zero.

• Use high number of iterations so simulation is stable.

• Apply lens effect to resulting fluid matrix.

Thursday, 30 August 2012

Astro Elk

• Try many initial conditions until it does something interesting.

• Increase diffusion at end so we get a fade-out effect.

• Render individual frames, combine into video with ffmpeg.

Thursday, 30 August 2012

Loss of detail at low iteration numbers

Thursday, 30 August 2012

Efficient Parallel Stencil Convolution

u’x,y
 = (ux,y
 + a (u’x-1,y + u’x+1,y + u’x,y-1 + u’x,y+1))
 / (1 + 4 * a)

0 1 0

1 0 1

0 1 0

Thursday, 30 August 2012

Canny Edge Detection

DifferentiateGreyScale Blur

Mag / Dir Maxima Link Edges

Thursday, 30 August 2012

Sharing in computations of adjacent pixels.

data Stencil sh a
= Stencil
{ stencilSize :: sh
, stencilZero :: b
, stencilAcc :: sh -> a -> a -> a }

makeStencil :: sh -> (sh -> Maybe a) -> Stencil sh a
makeStencil ex getCoeff
= Stencil ex 0
\$ \ix val acc

-> case getCoeff ix of
Nothing -> acc
Just coeff -> acc + val * coeff

Figure 6. Stencils and Stencil Construction

solveLaplace :: Int -> Image -> Image -> Image
solveLaplace steps arrBoundMask@Manifest{}

arrBoundValue@Manifest{} arrInit@Manifest{}
= iterateBlockwise’ steps arrInit
\$ zipWith (+) arrBoundValue
. zipWith (*) arrBoundMask
. map (/ 4)
. mapStencil2 (BoundConst 0) laplace

laplace :: Stencil sh a
laplace
= makeStencil (Z :. 3 :. 3)
\$ \ix -> case ix of

Z :. 0 :. 1 -> Just 1
Z :. 0 :. -1 -> Just 1
Z :. 1 :. 0 -> Just 1
Z :. -1 :. 0 -> Just 1
_ -> Nothing

niceLaplace :: Stencil sh a
niceLaplace
= [stencil2| 0 1 0

1 0 1
0 1 0 |]

Figure 7. Stencil Based Laplace Function. TODO: Wrong Mani-
fest constructors

Clearly, from sum-of-products expansion in REF , we don’t want
to perform multiplications where we know the coefficient is zero,
as adding the resulting term will not affect the final sum. The
simple, neat and wrong solution is to allow terms of the form 0*x
in the intermediate code, and then add a GHC rewrite rule CITE
to implement the obvious identities 0 ∗ x ≡ 0 and x + 0 ≡ x.
Unfortunately, the first one of these is invalid for standard IEEE-
704 floating point numbers because the operation 0∗∞ is supposed
to produce NaN (Not a Number). Although this hardly matters for
image processing, we still don’t want to add a GHC rewrite rule to
the source as these apply globally and we risk breaking other code
that depends on this property. Never the less, in the literature stencil
kernels are usually specified using zeros, so we allow them in our
Template Haskell sugar, but eliminate them during desugaring to
the coefficient function.

5.4 Evaluation order and sharing
Suppose we apply a 3x3 stencil to a single internal point in an
image, and that every coefficient in the kernel is non-zero. At the
least, this would require nine floating point values to be loaded from
the source array, and one floating point store to the result. Now, as
the computation of a single point in the result does not depend on
any others, we can evaluate elements of the result in an arbitrary

Figure 8. Overlapping support of four adjacent 3x3 stencils

order. This makes stencil convolution an embarrassingly parallel
operation, which gives us much flexibility in the implementation.

However, as we want our convolution to run with good absolute
performance on a finite number of processors, it is often better to
impose a specific order of evaluation to improve efficiency. Figure
8 shows the evaluation of four horizontally adjacent points. If we
were to evaluate each of these points independently, we would need
4× 9 = 36 loads of the source array, and four writes to the result.
However, if we were to evaluate all four points in one operation we
would only need 18 loads, as well as the four writes to the result.
There is also the potential to share the evaluation of array indices,
and well as multiplications, depending on the form of the kernel.

The potential for sharing of indexing computations can be seen
from Fig. 2 which shows the core IR for part of the inner loop of
our original Laplace function. Although this code only computes
a single point in the result, note that the second argument to each
application of indexDoubleArray# produces the offset into the
array for each point in the stencil. This is performed with the famil-
iar expression x + y * width, where x and y are the coordinates
of the element of interest. TODO: Explain why we have ixLinear
in that code, either here or beforehand. However, as the spacial re-
lationship between the elements is fixed, we could instead compute
the index of the focus of the stencil, and then get to the others by
adding +1/-1 to get to the elements on the left and right of the fo-
cus, and +width/-width to get to the elements above and below. In
the case where we compute four elements of the result in a single
operation, the potential savings are even greater.

Recovering this sort of sharing is a well known problem in com-
piler optimisation, and is the target of the Global Value Numbering
(GVN) CITE transformation performed in some compilers. Unfor-
tunately, no current Haskell compiler implements this transform,
so we are not home free yet. Although GHC can now compile
via LLVM CITE , and LLVM does implement a GVN pass, its
ability to apply it to GHC generated code is currently limited by
low level memory aliasing issues exposed by the transformation
between GHC Code and the LLVM IR. More discussion in REF .

However, with a careful encoding of the problem in the source
language we can express some of this sharing directly and make
LLVM compiler’s job easier. This brings us to the cursored arrays,
which we discuss in the next section. TODO: Easier or possible?
Saying that it makes the job easier for the LLVM compiler, but that
it can do it anyway isn’t convincing.

5.5 Cursored arrays
Recall the new Repa array representation from §5.1. The definition
of element generators is repeated below for reference. TODO:

Prior work on cursors, ie from Ypnos. Cursors aren’t new, but we
show their relationship with delayed arrays.

data Generator sh a
= GenManifest { genVector :: Vector a }

| forall cursor.

— DRAFT — DRAFT — DRAFT — DRAFT — 6 2011/3/10

4*9 = 36
3*6 = 18

36 / 18 = 2

Thursday, 30 August 2012

Source Stencil Definition

laplace :: Stencil sh a
laplace = [stencil2| 0 1 0
 1 0 1
 0 1 0 |]

Thursday, 30 August 2012

 09b0 mov 0x2e(rbx), rcx
 09b4 mov 0x1e(rbx), rdx
 09b8 mov rdx, rsi
 09bb imul rcx, rsi
 09bf mov 0x36(rbx), rdi
 09c3 lea 0x4(r14,rdi,1), r8
 09c8 add r14, rdi
 09cb lea 0x1(rcx), r9
 09cf imul rdx, r9
 09d3 lea 0x2(r9,rdi,1), r10
 09d8 mov 0x6(rbx), r11
 09dc mov 0xe(rbx), r15

L 09e0 movss 0x10(r15,r10,4), xmm7
 09e7 lea (r8,r9,1), r10
L 09eb movss 0x10(r15,r10,4), xmm8
 09f2 subss xmm7, xmm8
 09f7 lea (r8,rsi,1), r10
L 09fb movss 0x10(r15,r10,4), xmm9
 0a02 addss xmm9, xmm9
 0a07 addss xmm8, xmm9
 0a0c lea 0x2(rsi,rdi,1), r10
L 0a11 movss 0x10(r15,r10,4), xmm8
 0a18 movaps xmm8, xmm10
 0a1c mulss xmm0, xmm10
 0a21 addss xmm9, xmm10
 0a26 dec rcx
 0a29 imul rdx,rcx
 0a2d add rcx,r8

L 0a30 addss 0x10(r15,r8,4), xmm10
 0a37 lea 0x1(r9,rdi,1), rdx
L 0a3c movss 0x10(r15,rdx,4), xmm9
 0a43 lea 0x3(r9,rdi,1), rdx
L 0a48 movss 0x10(r15,rdx,4), xmm11
 0a4f subss xmm9, xmm11
 0a54 lea 0x3(rsi,rdi,1), rdx
L 0a59 movss 0x10(r15,rdx,4), xmm12
 0a60 addss xmm12, xmm12
 0a65 addss xmm11, xmm12
 0a6a lea 0x1(rsi,rdi,1), rdx
L 0a6f movss 0x10(r15,rdx,4), xmm11
 0a76 movaps xmm11, xmm13
 0a7a mulss xmm0, xmm13
 0a7f addss xmm12, xmm13
 0a84 lea 0x3(rcx,rdi,1), rdx
L 0a89 addss 0x10(r15,rdx,4), xmm13

 0a90 lea (rdi,r9,1), rdx
L 0a94 subss 0x10(r15,rdx,4), xmm7
 0a9b addss xmm8, xmm8
 0aa0 addss xmm7, xmm8
 0aa5 lea 0x1(rcx,rdi,1), rdx
 0aaa lea 0x2(rcx,rdi,1), r8
 0aaf lea (rdi,rsi,1), r10
L 0ab3 movss 0x10(r15,r10,4), xmm7
 0aba mulss xmm0, xmm7
 0abe addss xmm8, xmm7
L 0ac3 movss 0x10(r15,r8,4), xmm8
 0aca addss xmm8, xmm7
 0acf lea (rdi,rcx,1), r8
L 0ad3 subss 0x10(r15,r8,4), xmm7

 0ada add rax, rdi
 0add add rdi, r9
L 0ae0 subss 0x10(r15,r9,4), xmm9
 0ae7 addss xmm11, xmm11
 0aec addss xmm9, xmm11
 0af1 lea (rdi,rsi,1), r8
L 0af5 movss 0x10(r15,r8,4), xmm9
 0afc mulss xmm0, xmm9
 0b01 addss xmm11, xmm9
L 0b06 movss 0x10(r15,rdx,4), xmm11
 0b0d addss xmm11, xmm9
 0b12 add rcx, rdi
L 0b15 subss 0x10(r15,rdi,4), xmm9

 0b1c add r14,rsi
S 0b1f movss xmm9,0x10(r11,rsi,4)
 0b26 mov 0x6(rbx),rcx
S 0b2a movss xmm7,0x14(rcx,rsi,4)
 0b30 subss xmm11,xmm13
 0b35 mov 0x6(rbx),rcx
S 0b39 movss xmm13,0x18(rcx,rsi,4)
 0b40 subss xmm8,xmm10
 0b45 mov 0x6(rbx),rcx
S 0b49 movss xmm10,0x1c(rcx,rsi,4)
 0b50 lea 0x8(r14),rcx
 0b54 lea 0x4(r14),r14
 0b58 cmp 0x26(rbx),rcx
 0b5c jle 9b0

data Stencil sh a
= Stencil
{ stencilSize :: sh
, stencilZero :: b
, stencilAcc :: sh -> a -> a -> a }

makeStencil :: sh -> (sh -> Maybe a) -> Stencil sh a
makeStencil ex getCoeff
= Stencil ex 0
\$ \ix val acc

-> case getCoeff ix of
Nothing -> acc
Just coeff -> acc + val * coeff

Figure 6. Stencils and Stencil Construction

solveLaplace :: Int -> Image -> Image -> Image
solveLaplace steps arrBoundMask@Manifest{}

arrBoundValue@Manifest{} arrInit@Manifest{}
= iterateBlockwise’ steps arrInit
\$ zipWith (+) arrBoundValue
. zipWith (*) arrBoundMask
. map (/ 4)
. mapStencil2 (BoundConst 0) laplace

laplace :: Stencil sh a
laplace
= makeStencil (Z :. 3 :. 3)
\$ \ix -> case ix of

Z :. 0 :. 1 -> Just 1
Z :. 0 :. -1 -> Just 1
Z :. 1 :. 0 -> Just 1
Z :. -1 :. 0 -> Just 1
_ -> Nothing

niceLaplace :: Stencil sh a
niceLaplace
= [stencil2| 0 1 0

1 0 1
0 1 0 |]

Figure 7. Stencil Based Laplace Function. TODO: Wrong Mani-
fest constructors

Clearly, from sum-of-products expansion in REF , we don’t want
to perform multiplications where we know the coefficient is zero,
as adding the resulting term will not affect the final sum. The
simple, neat and wrong solution is to allow terms of the form 0*x
in the intermediate code, and then add a GHC rewrite rule CITE
to implement the obvious identities 0 ∗ x ≡ 0 and x + 0 ≡ x.
Unfortunately, the first one of these is invalid for standard IEEE-
704 floating point numbers because the operation 0∗∞ is supposed
to produce NaN (Not a Number). Although this hardly matters for
image processing, we still don’t want to add a GHC rewrite rule to
the source as these apply globally and we risk breaking other code
that depends on this property. Never the less, in the literature stencil
kernels are usually specified using zeros, so we allow them in our
Template Haskell sugar, but eliminate them during desugaring to
the coefficient function.

5.4 Evaluation order and sharing
Suppose we apply a 3x3 stencil to a single internal point in an
image, and that every coefficient in the kernel is non-zero. At the
least, this would require nine floating point values to be loaded from
the source array, and one floating point store to the result. Now, as
the computation of a single point in the result does not depend on
any others, we can evaluate elements of the result in an arbitrary

Figure 8. Overlapping support of four adjacent 3x3 stencils

order. This makes stencil convolution an embarrassingly parallel
operation, which gives us much flexibility in the implementation.

However, as we want our convolution to run with good absolute
performance on a finite number of processors, it is often better to
impose a specific order of evaluation to improve efficiency. Figure
8 shows the evaluation of four horizontally adjacent points. If we
were to evaluate each of these points independently, we would need
4× 9 = 36 loads of the source array, and four writes to the result.
However, if we were to evaluate all four points in one operation we
would only need 18 loads, as well as the four writes to the result.
There is also the potential to share the evaluation of array indices,
and well as multiplications, depending on the form of the kernel.

The potential for sharing of indexing computations can be seen
from Fig. 2 which shows the core IR for part of the inner loop of
our original Laplace function. Although this code only computes
a single point in the result, note that the second argument to each
application of indexDoubleArray# produces the offset into the
array for each point in the stencil. This is performed with the famil-
iar expression x + y * width, where x and y are the coordinates
of the element of interest. TODO: Explain why we have ixLinear
in that code, either here or beforehand. However, as the spacial re-
lationship between the elements is fixed, we could instead compute
the index of the focus of the stencil, and then get to the others by
adding +1/-1 to get to the elements on the left and right of the fo-
cus, and +width/-width to get to the elements above and below. In
the case where we compute four elements of the result in a single
operation, the potential savings are even greater.

Recovering this sort of sharing is a well known problem in com-
piler optimisation, and is the target of the Global Value Numbering
(GVN) CITE transformation performed in some compilers. Unfor-
tunately, no current Haskell compiler implements this transform,
so we are not home free yet. Although GHC can now compile
via LLVM CITE , and LLVM does implement a GVN pass, its
ability to apply it to GHC generated code is currently limited by
low level memory aliasing issues exposed by the transformation
between GHC Code and the LLVM IR. More discussion in REF .

However, with a careful encoding of the problem in the source
language we can express some of this sharing directly and make
LLVM compiler’s job easier. This brings us to the cursored arrays,
which we discuss in the next section. TODO: Easier or possible?
Saying that it makes the job easier for the LLVM compiler, but that
it can do it anyway isn’t convincing.

5.5 Cursored arrays
Recall the new Repa array representation from §5.1. The definition
of element generators is repeated below for reference. TODO:

Prior work on cursors, ie from Ypnos. Cursors aren’t new, but we
show their relationship with delayed arrays.

data Generator sh a
= GenManifest { genVector :: Vector a }

| forall cursor.

— DRAFT — DRAFT — DRAFT — DRAFT — 6 2011/3/10

Thursday, 30 August 2012

Image based videos

Thursday, 30 August 2012

Image based videos

Thursday, 30 August 2012

Thursday, 30 August 2012

Thursday, 30 August 2012

Thursday, 30 August 2012

Thursday, 30 August 2012

