
Repa
Regular, Shape-polymorphic, Parallel Arrays

 Gabriele Keller1 / Manuel Chakravarty1

 Roman Leshchinskiy1 / Simon Peyton Jones2 / Ben Lippmeier1

1University of New South Wales
2Microsoft Research Ltd, Cambridge England

Example Applications

Solving the
Laplace Equation

Fast Fourier
Transform

(highpass filter)

Example Applications

Solving the
Laplace Equation

u

l x0 r

d

x0’= (l + r + u + d) / 4

Laplace Equation

100 steps 500 steps 1000 steps

5000 stepsboundary conditions

0 steps

2D Fast Fourier Transform (FFT)

image space

frequency space

Regular, Shape-polymorphic, Parallel Arrays

• Regular Arrays
Arrays are dense and rectangular.
Most elements are non-zero.

Regular, Shape-polymorphic, Parallel Arrays

• Regular Arrays
Arrays are dense and rectangular.
Most elements are non-zero.

• Shape Polymorphic
Functions work over arrays of arbitrary rank (dimension).

Regular, Shape-polymorphic, Parallel Arrays

• Regular Arrays
Arrays are dense and rectangular.
Most elements are non-zero.

• Shape Polymorphic
Functions work over arrays of arbitrary rank (dimension).

• Flat Data Parallelism
Individual computations don’t need to communicate.
Parallel computations don’t spark further parallel computations

Matrix Transposition

transpose2D
 :: Elt e => Array DIM2 e -> Array DIM2 e

transpose2D arr
 = backpermute newExtent swap arr
 where swap (Z :.i :.j) = Z :.j :.i
 newExtent = swap (extent arr)

10 20 30

44 55 66

10 44

20 55

30 66

Matrix Transposition

transpose2D
 :: Elt e => Array DIM2 e -> Array DIM2 e

transpose2D arr
 = backpermute newExtent swap arr
 where swap (Z :.i :.j) = Z :.j :.i
 newExtent = swap (extent arr)

10 20 30

44 55 66

10 44

20 55

30 66

• An Index Space Transform

• The ordering of the elements
changes, but the values do not.

Matrix Transposition

transpose2D
 :: Elt e => Array DIM2 e -> Array DIM2 e

transpose2D arr
 = backpermute newExtent swap arr
 where swap (Z :.i :.j) = Z :.j :.i
 newExtent = swap (extent arr)

10 20 30

44 55 66

10 44

20 55

30 66

• An Index Space Transform

• The ordering of the elements
changes, but the values do not.

• We usually want to push such
transforms into the consumer.

Matrix Multiplication (A.B)i,j = Σk=1
n Ai,k . Bk,j

a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43

b11 b12
b21 b22
b31 b32

c11 c12

c21 c22

c31 c32

c41 c42

=

Matrix Multiplication (A.B)i,j = Σk=1
n Ai,k . Bk,j

sum
c11

c21

• All elements of the result
 can be computed in parallel!

Matrix Multiplication

mmMult
 :: (Num e, Elt e)
 => Array DIM2 e
 -> Array DIM2 e -> Array DIM2 e

mmMult arr brr
 = sum (zipWith (*) arrRepl brrRepl)
 where
 trr = transpose2D brr
 arrR = replicate (Z :.All :.colsB :.All) arr
 brrR = replicate (Z :.rowsA :.All :.All) trr
 (Z :. colsA :. rowsA) = extent arr
 (Z :. colsB :. rowsB) = extent brr

Fusion

• It’s nice to program with bulk operations
 .. but we usually want them to be fused.

• We imagine replicating the source arrays being replicated
 when writing the program, but we don’t want this at runtime.

• Fusion eliminates the intermediate arrays and the
 corresponding memory traffic.

Manifest and Delayed Arrays

•Manifest wraps a bona-fide unboxed array.
Bulk-strict semantics. Forcing one element forces them all.

•Delayed wraps an element producing function, perhaps an
index transformation that references some other array.

• Delayed functions are inlined and fused by the existing GHC
optimiser (and lots of rewrite rules).

data Array sh e
 = Manifest sh (UArr e)
 | Delayed sh (sh -> e)

Sharing and force

let arr = ...
 brr = map f arr
in mmMult brr brr

Sharing and force

let arr = ...
 brr = map f arr
in mmMult brr brr

data Array sh e
 = Manifest sh (UArr e)
 | Delayed sh (sh -> e)

Sharing and force

• For Manifest arrays, force is the identity.

• For Delayed arrays, it evaluates all the elements in parallel,
producing a manifest array.

• The programmer must add force manually.

let arr = ...
 brr = force (map f arr)
in mmMult brr brr

data Array sh e
 = Manifest sh (UArr e)
 | Delayed sh (sh -> e)

force :: Array sh e
 -> Array sh e

Using the force ...

a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43

b11 b12
b21 b22
b31 b32

c11 c12

c21 c22

c31 c32

c41 c42

=

• We get better cache performance
 when accessing the b elements
 left-to-right rather than top-to-bottom

Using the force ...

mmMult arr brr
 = sum (zipWith (*) arrRepl brrRepl)
 where
 trr = force (transpose2D brr)
 arrR = replicate (Z :.All :.colsB :.All) arr
 brrR = replicate (Z :.rowsA :.All :.All) trr
 (Z :. colsA :. rowsA) = extent arr
 (Z :. colsB :. rowsB) = extent brr

mmMult
 :: (Num e, Elt e)
 => Array DIM2 e
 -> Array DIM2 e -> Array DIM2 e

Replicate and Slice are duals.

A B C

A B C

A B C

A B C

Replicate

A B C

D E F

G H I

J K L

A B C

D E F

Slice

• Replicate and Slice are index transforms.

• The values of the array elements do not change.

Type hackery

A B C

D E F

G H I

J K L

D E F

Slice

Type hackery

A B C

D E F

G H I

J K L

D E F

Slice
A B C

D E F

G H I

J K L

C

F

I

L

Slice

Type hackery

A B C

D E F

G H I

J K L

D E F

Slice
A B C

D E F

G H I

J K L

slice :: (Slice sl, Elt e
 , Shape (FullShape sl))
 , Shape (SliceShape sl))
 => Array (FullShape sl) e
 -> sl -> Array (SliceShape sl) e

C

F

I

L

Slice

Other operations

map :: (Shape sh, Elt a, Elt b)
 => (a -> b) -> Array sh a -> Array sh b

zip :: (Shape sh, Elt a, Elt b)
 => Array sh a -> Array sh b
 -> Array sh (a, b)

foldl :: (Shape sh, Elt a, Elt b)
 => (a -> b -> a) -> a
 -> Array (sh :. Int) e -> Array sh a

reshape :: (Shape sh, Shape sh’, Elt e)
 => sh -> Array sh’ e -> Array sh e

Matrix Multiplication 1024x1024

• C reference version uses
 double nested loops.

• Exposing sufficient parallelism
 on the T2 is a must.

GCC
single
thread

fastest
parallel

Xenon 3.8s 4.6s 0.64s

T2 52s 92s 2.4s

Laplace Equation

• GHC native code generator
 does no instruction reordering
 on SPARC. No LLVM ‘port.

• Single threaded on T2 is slow

GCC
single
thread

fastest
parallel

Xenon 0.70 1.7s 0.68s

T2 6.5s 32s 3.8s

2D Fast Fourier Transform (FFT)

• C version is FFTW which
 uses in-place deep magic.

• Parallelism is no substitute
 for a better algorithm.

GCC
single
thread

fastest
parallel

Xenon 0.24 8.8s 2.0s

T2 2.4s 98s 7.7s

2D Fast Fourier Transform (FFT)

fft1D :: Array (sh:.Int) Double
 -> Array (sh:.Int) Double
 -> Array (sh:.Int) Double

fft1D rofu
 | n > 2 = (left +^ right) :+: (left -^ right)
 | n == 2 = traverse v id swivel
 where
 (_ :. n) = extent v
 swivel f (ix:.0) = f (ix:.0) + f (ix:.1)
 swivel f (ix:.1) = f (ix:.0) - f (ix:.1)

 rofu’ = evenHalf rofu
 left = force . .fft1D rofu’ .evenHalf $ v
 right = force .(*^ rofu).fft1D rofu’ .oddHalf $ v

Future work

• The examples we’ve presented are easy to write,
 but are cache naive.

Future work

• The examples we’ve presented are easy to write,
 but are cache naive.

• Using, block based matrix multiplication imposes a
 restriction on the order of evaluation...
 ... and makes it less obvious how to parallelise.

Future work

• The examples we’ve presented are easy to write,
 but are cache naive.

• Using, block based matrix multiplication imposes a
 restriction on the order of evaluation...
 ... and makes it less obvious how to parallelise.

• Repeated index computations can be expensive.
 GHC does not perform strength reduction on its loops.

Get it

• We depend on the the current version of the
GHC head for decent performance.

• There will be a new release in a few weeks
with GHC 7.0

• Send me your programs and I’ll add them to
our performance regression testsuite!

http://trac.haskell.org/repa

http://trac.haskell.org/repa
http://trac.haskell.org/repa

Questions?

Spare Slides

Shapes and Indices

data Z = Z
data tail :. head = tail :. head

type DIM0 = Z
type DIM1 = DIM0 :. Int
type DIM2 = DIM1 :. Int
...

class Shape sh where
 rank :: sh -> Int
 size :: sh -> Int
 toIndex :: sh -> sh -> Int
 fromIndex :: sh -> Int -> sh

instance Shape Z where ...
instance Shape sh => Shape (sh :. Int) where ...

Generic Traversal and the 3rd order function

• A sane use for a third order function!

• Traverse takes a function to calculate the elements of the array.

• That function is passed a function to get elements of the
source array.

traverse
 :: (Shape sh, Shape sh’, Elt e)
 => Array sh e
 -> (sh -> sh’) -- shape transform
 -> ((sh -> e) -> sh’ -> e’) -- elem transform
 -> Array sh’ e’

Laplace Equation

stencil :: Array DIM2 Double
 -> Array DIM2 Double

stencil arr
 = traverse arr id update
 where
 _ :. height :. width = extent arr

 update get d@(sh :. i :. j)
 = if isBoundary i j
 then get d
 else (get (sh :. (i-1)) :. j)
 + get (sh :. i :. (j-1))
 + get (sh :. (i+1)) :. j)
 + get (sh :. i :. (j+1))) / 4

