Repa
Regular, Shape-polymorphic, Parallel Arrays

Gabriele Keller' / Manuel Chakravarty’
Roman Leshchinskiy' / Simon Peyton Jones? / Ben Lippmeier’

'University of New South Wales
°’Microsoft Research Ltd, Cambridge England

—xample Applications

Solving the
Laplace Equation

Fast Fourier

4

v,

Transform 5
highpass fitter) | ¥4

{

g &8
7
("‘ P v
o
B - -
o™y W
e :
‘
. \
k./ i -
/ -~
L

/ K 4 i

/
%
3
4
"
7t

—xample Applications

Solving the
Laplace Equation

Laplace Equation

boundary conditions 5000 steps

O steps 100 steps 500 steps 1000 steps

D Fast Fourier Transform (FFT)

Regular, Shape-polymorphic, Parallel Arrays

e Regular Arrays
Arrays are dense and rectangular.
Most elements are non-zero.

Regular, Shape-polymorphic, Parallel Arrays

e Regular Arrays
Arrays are dense and rectangular.
Most elements are non-zero.

e Shape Polymorphic
Functions work over arrays of arbitrary rank (dimension).

Regular, Shape-polymorphic, Parallel Arrays

e Regular Arrays
Arrays are dense and rectangular.
Most elements are non-zero.

e Shape Polymorphic
Functions work over arrays of arbitrary rank (dimension).

e Flat Data Parallelism
Individual computations don’t need to communicate.
Parallel computations don’t spark further parallel computations

Matrix Transposition

transposezD
:: Elt e => Array DIMZ2 e -> Array DIM2 e

transposeZD arr
= backpermute newkExtent swap arr

where swap (2 :.1 :.7) Z .7 .1

newbkxtent = swap (extent arr)

Matrix Transposition

transposezD
:: E1lt e => Array DIMZ e -> Array DIMZ e

transposeZD arr

= backpermute newkExtent swap arr

where swap (2 :.1 :.7) Z .7 .1
newkExtent swap (extent arr)

e An Index Space Transform

* The ordering of the elements
changes, but the values do not.

Matrix Transposition

transposezD
Elt e => Array DIM2 e -> Array DIM2 e

transposeZD arr

= backpermute newkExtent swap arr

where swap (2 :.1 :.7) Z .7 .1
newkExtent = swap (extent arr)

e An Index Space Transform

* The ordering of the elements
changes, but the values do not.

¢ \We usually want to push such
transforms into the consumer.

Matrix Multiplication — (A.B);;

Matrix Multiplication (A.B)i; = Zk=1 Aik . Bk,

e All elements of the result
can be computed in parallel!

Matrix Multiplication

mmMult

(Num e, E1lt e)

=> Array DIMZ e
-> Array DIMZ e -> Array DIMZ e

mmMult arr brr
= sum (zipWith (*) arrRepl brrRepl)

where
trr transposeZ2D brr
arrR replicate (Z2 :.All :.COlsB
brrR replicate (Z2 :.rowsA :.All
(Z :. colsA :. rowsA) = extent arr
(Z :. colsB :. rowsB) = extent brr

:.All) arr
:.Al11l) trr

Fusion

* |t’s nice to program with bulk operations
.. but we usually want them to be fused.

e \We imagine replicating the source arrays being replicated

when writing the program, but we don’t want this at runtime.

e Fusion eliminates the intermediate arrays and the
corresponding memory traffic.

Manifest and Delayed Arrays

data Array sh e
= Manifest sh (UArr e)
| Delayed sh (sh =-> e)

eManifest wraps a bona-fide unboxed array.
Bulk-strict semantics. Forcing one element forces them all.

e Delayed wraps an element producing function, perhaps an
index transformation that references some other array.

e Delayed functions are inlined and fused by the existing GHC
optimiser (and lots of rewrite rules).

Sharing and force

let arr =
brr = map £ arr
in mmMult brr brr

Sharing and force

data Array sh e
= Manilifest sh (UArr e)
| Delayed sh (sh =-> e)

let arr =
brr = map £ arr
in mmMult brr brr

Sharing and force

data Array sh e
= Manilifest sh (UArr e)
| Delayed sh (sh =-> e)

force :: Array sh e
-> Array sh e

let arr = .
brr = force (map f arr)
in mmMult brr brr

e For Manifest arrays, force is the identity.

e For Delayed arrays, it evaluates all the elements in parallel,
producing a manifest array.

* The programmer must add force manually.

Using the force ...

e \We get better cache performance
when accessing the b elements
left-to-right rather than top-to-bottom

Using the force ...

mmMu l t

(Num e, El1t e)

=> Array DIMZ e
-> Array DIMZ e -> Array DIMZ e

mmMult arr brr
= sum (zipWith (*) arrRepl brrRepl)

where
trr transposeZD brr)

arrR = replicate (2 :.All :.CcolsB
brrR = replicate (2 :.rowsA :.All
(Z :. colsA :. rowsA) = extent arr
(Z :. colsB :. rowsB) = extent brr

:.Al1l) arr
: . All) trr

Replicate and Slice are duals.

Replicate

e Replicate and Slice are index transforms.

* The values of the array elements do not change.

Type hackery

Type hackery

Type hackery

(Slice sl, El1t e
, Shape (FullShape s1))
, Shape (SliceShape sl))
=> Array (FullShape sl) e
-> sl -> Array (SliceShape sl) e

Other operations

(Shape sh, Elt a, Elt Db)
(2 => b) -> Array sh a -> Array sh b

(Shape sh, Elt a, Elt Db)
Array sh a -> Array sh b
Array sh (a, b)

(Shape sh, Elt a, ELlt Db)
(a => b =-> a) -> a
Array (sh :. Int) e -> Array sh a

(Shape sh, Shape sh’, Elt e)
sh -> Array sh’ e =-> Array sh e

Matrix Multiplication 1024x1024

oh a 2x Quad—-core 3Ghz Xenon

fastest
parallel

0.64s
2.4s

8
7-
6-

Q 4 r

2

o 3r
2-
1-
0

threads

onh a 1.4Ghz UltraSPARC T2

e C reference version uses
double nested loops.

speedup

e Exposing sufficient parallelism
on the T2 Iis a must.

24 32 40 48 56
threads (on 8 PEs)

Laplace Equation

oh 2x Quad—-core 3GHz Xenon

size 400x400 |
fastest
parallel

0.68s
3.8

size 300x300

speedup

threads

on a 1.4Ghz UltraSPARC T2

e GHC native code generator
does no instruction reordering

on SPARC. No LLVM ‘port.

size 300x300

size 400x400

speedup

e Single threaded on T2 is slow

6 8 10 12 14 16
threads {(on 8 PEs)

D Fast Fourier Transform (FFT)

oh 2x Quad—-core 3GHz Xenon

fastest
parallel

2.0s
(.7S

speedup

threads

on 1.4Ghz UltraSPARC T2]] .
— ——— e C versionis FFTW which
uses in-place deep magic.

¢ Parallelism is no substitute
for a better algorithm.

speedup

12 16 20 24 28
threads (on 8 PEs)

D Fast Fourier Transform (FFT)

fftlD :: Array (sh:.Int) Doub.
—> Array (sh:.Int) Doubl
—-> Array (sh:.Int) Doubl

fftlD rofu

| n > 2 (left +° right) :+: (left -" right)
| n == traverse v 1d swivel

where

(.) = extent v

swivel f (ix:.0) f (1x:. 1x:.1)
swivel £ (1 1) f (1x: 1xX:.1)
rofu’ evenHalf rofu

left force . .fftlD rofu’ .evenHalf $ v
right force . (*" rofu).fftlD rofu’ .oddHalf S v

Future work

e The examples we’ve presented are easy to write,
but are cache naive.

Future work

e The examples we’ve presented are easy to write,
but are cache naive.

e Using, block based matrix multiplication imposes a
restriction on the order of evaluation...
... and makes it less obvious how to parallelise.

Future work

e The examples we’ve presented are easy to write,
but are cache naive.

e Using, block based matrix multiplication imposes a
restriction on the order of evaluation...
... and makes it less obvious how to parallelise.

¢ Repeated index computations can be expensive.
GHC does not perform strength reduction on its loops.

http://trac.haskell.org/repa

¢ \We depend on the the current version of the
GHC head for decent performance.

e There will be a new release in a few weeks
with GHC 7.0

e Send me your programs and I'll add them to
our performance regression testsuite!

http://trac.haskell.org/repa
http://trac.haskell.org/repa

Questions?

Spare Slides

Shapes and Indices

data 7Z y/
data tail :. head tail :. head

type DIMO Z
type DIMI1 DIMO :. Int
type DIM2 DIM]1 :. Int

class Shape sh where
rank sh Int
size sh Int
toIndex sh sh -=> Int
fromIndex Int =-> sh

instance Shape 7Z where
instance Shape sh Shape (sh :. Int) where

Generic Traversal and the 3rd order function

traverse
(Shape sh, Shape sh’, Elt e)
Array sh e
(sh -=> sh') —— shape transform
((sh -=> e) -> sh’ -> e’) —— elem transform
Array sh' e’

e A sane use for a third order function!
® Traverse takes a function to calculate the elements of the array.

e That function is passed a function to get elements of the
source array.

Laplace Equation

stencil :: Array DIM2 Double
-> Array DIM2 Double

stencil arr
= traverse arr 1d update
where
- height :. width = extent
update get d@(sh :. 1 :. 7J)
= 1f isBoundary 1 J
then get d
else (get (sh :. (1-1))
+ get (sh : '
+ get (sh
+ get (sh

(J+1))) / 4

