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A B S T R A C T

To learn from a large dataset, we generally want to perform lots of queries. If we perform each
query separately, we may spend more time reading and re-reading the same dataset than we
spend computing the answer. Instead of performing each query separately, we would like to
amortise the cost of reading the data by performing multiple queries at the same time.

Two streaming models for executing multiple queries concurrently are push streams and
Kahn process networks. Push streams can be used to execute multiple queries concurrently,
but push streams can be unwieldy to use as queries must be constructed “back-to-front”. We
introduce a query language called Icicle, which allows programmers to write and reason about
queries using a more familiar array-based semantics, while retaining the execution strategy
of push streams. �e type system of Icicle guarantees that well-typed query programs have
the same semantics whether they are executed as array programs or as stream programs, and
that all queries over the same input data can be executed together.

However, push streams do not support computations with multiple inputs except for non-
deterministically merging two streams. Kahn process networks support multiple inputs and
multiple queries, but require dynamic scheduling and inter-process communication, both of
which can introduce signi�cant overhead. We introduce a method for taking multiple pro-
cesses in a Kahn process network and fusing them together into a single process. �e fused
process communicates through local variables rather than costly communication channels.
�is fusion method generalises previous work on stream fusion and demonstrates the connec-
tion between fusion and the synchronised product operator, which is generally used in the
context of veri�cation and model checking, rather than as an optimisation.

Some queries must be executed in multiple passes, as they need to read the input data
multiple times, or may produce intermediate outputs which are then read back in. For such
queries, there are usually many di�erent ways to schedule the work among the separate passes.
Prior work demonstrated how integer linear programming (ILP) can be used to �nd optimal
schedules for imperative array programs. However, these approaches can only handle opera-
tions that preserve the size of the array, missing out on some optimisation opportunities. We
introduce a clustering algorithm for scheduling queries wri�en using array combinators, and
extend prior work to support size-changing operations.
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C H A P T E R 1

I N T R O D U C T I O N

To learn interesting things from a large dataset, we generally want to perform lots of queries.
When each query is simple and our data is big, we might spend more time reading the data
than we spend computing the answer. Instead of performing each query separately and having
to re-read the same data many times, we would like to amortise the cost of reading the data
by performing multiple queries at the same time.

When querying datasets that do not �t in memory or disk, it can be hard to ensure that
our query program’s internal state will �t in memory. One way to transform large datasets
in constant memory is to write the query as a streaming program (Chapter 2) by composing
stream transformers together. Composing stream transformers naively can introduce some
performance overhead, which is then usually removed by fusing multiple transformers into
a single transformer. A�er fusion, stream transformers can also be used as an e�cient and
convenient method for executing list and array programs (Cou�s et al., 2007).

�is thesis describes low-overhead streaming models for executing multiple queries at a
time. We focus on two streaming models: push streams (Section 2.3), and Kahn process net-
works (Section 2.5, Chapter 4).

Push streams can be used to execute multiple queries at a time, but queries using push
streams can be unwieldy to write as they must be constructed “back-to-front”. In Chapter 3 we
introduce a query language called Icicle, which allows programmers to write and reason about
queries using a more familiar array-based semantics, while retaining the execution strategy
of push streams. �e type system of Icicle guarantees that well-typed query programs have
the same semantics whether they are executed as array programs or as stream programs, and
that all queries over the same input can be executed together in a single pass. Icicle has been
running in production at Ambiata, a machine-learning company, for over two years. For one
particular client, we receive thirty gigabtyes of uncompressed new data every day. Each record
in the data represents an action by a particular end-user, and we use Icicle to execute a set of
around four thousand prepared queries for each end-user. Each end-user’s query results are
given as inputs to a statistical model that aims to predict the end-user’s future behaviour. �e
compressed input data is stored inde�nitely and currently requires �ve terabytes of storage.



2 I N T R O D U C T I O N

When creating a new statistical model, Icicle is used to provide training data by executing a
new set of queries over the entire historical data.

However, push streams, and by extension Icicle, do not support streaming computations
with multiple inputs except for non-deterministically merging two streams. In some circum-
stances, this non-deterministic merge can be used to append streams — as we shall see in
Section 2.3. As an alternative to push streams, Kahn process networks (Kahn and Mac�een,
1977) support both multiple inputs and multiple queries, but require dynamic scheduling and
inter-process communication, both of which can introduce signi�cant runtime overhead. In
Section 4.3 we describe process fusion, a method for taking multiple processes in a Kahn pro-
cess network and fusing them together into a single process. �e fused process communicates
through local variables rather than costly communication channels, and executes faster than
the original Kahn process network in our benchmarks (Chapter 5). �is fusion method gener-
alises previous work on stream fusion (Section 6.1) and demonstrates the connection between
fusion and the synchronised product operator (Section 6.4), which is generally used in the
context of verifying properties of concurrent processes and model checking, rather than as an
optimisation.

When the input dataset is small enough to �t in memory, we can write each query as an
array program rather than as a streaming program. We can write array programs by composing
array operations together. �e array programs, one for each individual query, can then be
combined into a larger array program. Array programs can read from input arrays multiple
times, and can produce intermediate and output arrays. �e produced arrays can also be read
from multiple times. We can execute array programs by dividing the operations into passes,
and fusing all the operations in the same pass into a single loop. Each individual pass may
contain operations from multiple queries, so we use the above process fusion method to fuse
the array operations together. For array programs that require multiple passes, there are o�en
many di�erent ways to schedule the work among the passes. We perform clustering on the
program to determine how many passes to perform, and how to schedule each array operation
among the di�erent passes. �e choice of clustering a�ects runtime performance. To minimise
the time spent reading and re-reading arrays, we would like to use a clustering which requires
the minimum number of passes and intermediate arrays. Finding such a minimal clustering is
NP-hard (Darte, 1999).

In Chapter 7, we �nd the minimal clustering by representing the array program’s possible
clusterings as an integer linear program, and using an external solver to �nd a solution that
minimises our cost metric. Our clustering algorithm extends Megiddo and Sarkar (1997) to
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cluster array combinators, adding support for size-changing operations such as �lter. �e clus-
tering algorithm of Megiddo and Sarkar (1997) uses integer linear programming to compute
the clustering for an imperative loop nest rather than a set of array combinators. Individual
loops in the loop nest are assigned to clusters, and all loops in the same cluster are fused to-
gether. In Megiddo and Sarkar (1997), as with many imperative loop fusion systems, loops can
only be fused together if their loop bounds are identical. In these systems, a loop that �lters an
array cannot be fused with a loop that consumes the �ltered array, as they have di�erent loop
bounds. With process fusion, we can fuse a �lter with its consumer, so a clustering algorithm
for imperative loop nests would introduce more passes than necessary.

1.1 C O N T R I B U T I O N S

�is thesis makes the following contributions:

modal types to ensure efficiency and correctness: if, due to time or cost con-
straints, we can only a�ord one pass over the input data, we need some guarantee that
all our queries can be executed together. �e streaming query language Icicle uses modal
types to ensure that all queries over the same input can be executed together in a sin-
gle pass, as well as ensuring that the stream query has the same semantics as if it were
operating over arrays. Icicle is described in Chapter 3.

process fusion: a method for fusing stream combinators; the �rst that supports all three
of multiple inputs, multiple concurrent queries, and user-de�ned combinators. In this
streaming model, each combinator in each query is implemented as a sequential process.
Together, the combinators of all queries form a concurrent process network. Processes
are then fused together using an extension of synchronised product. Process fusion is
described in Chapter 4.

formal proof of correctness of fusion: a proof of correctness for process fusion,
mechanised in the proof assistant Coq. �e proof states that when two processes are
fused together, the fused process computes the same result as the original processes.
�e proof is described in Section 4.6.

clustering for array-backed streams: a clustering algorithm for array combinators,
which supports size-changing operators such as �lter. We allow size-changing opera-
tors to be assigned to the same cluster as operations that process their input and out-
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put arrays; existing clustering algorithms for imperative loop nests cannot assign size-
changing operators to the same cluster as operations that consume the di�erently-sized
output array. Our algorithm encodes the clustering constraints of a set of array combi-
nators as an integer linear program to be solved externally. �e clustering algorithm is
described in Chapter 7.

�e next chapter introduces some background on di�erent streaming models, as well as
more concretely motivating why we want to execute multiple streaming queries concurrently.



C H A P T E R 2

A B R I E F T A X O N O M Y O F S T R E A M I N G M O D E L S

We start by looking at how to write queries as streaming programs, so that we may query
large datasets without running out of memory. Streaming programs consume data from their
input streams element by element, processing the elements in sequential order, and need only
store a limited number of elements at a time as local state. A streaming program cannot
rewind an input stream to re-read previous elements, or perform random access to read from
an arbitrary element in the stream. �ese restrictions mean that a streaming program cannot,
for example, sort all the input data in a single pass over the input stream, because single-pass
sorting requires storing all the elements in memory. �e upside of these restrictions is that
if we can write our queries as streaming programs, we can be con�dent that they will run in
constant space — no ma�er how large the input stream is. In general, input streams may be
in�nite, though in this thesis we focus on large but �nite streams.

Streaming, as described above, is a rather general concept. �is de�nition tells us what
a streaming program is, but it does not o�er any guidance on how to write streaming pro-
grams. In fact, there are many ways to write streaming programs; in this thesis we restrict
our a�ention to streaming programs wri�en in a functional style. �e functional style of writ-
ing streaming programs involves using small stream transformers that are composed to create
larger programs. �e bene�t of this style is that each stream transformer can be reasoned
about and tested in isolation, without having to worry about any hidden dependencies or in-
terference between di�erent transformers.

�ere are numerous streaming models to choose from, and we must commit to a particular
model before we can start writing programs. Choosing a streaming model requires making a
trade-o� between the performance overhead, which operations are supported, and the amount
of extra bookkeeping the programmer must perform to write their program compared to a non-
streaming implementation. We must compare di�erent streaming models to make an informed
decision. We start our initial comparison by focussing on two low-overhead streaming models
to illustrate how they support di�erent operations, and to motivate the use of Kahn process
networks as a streaming model. In Chapter 5, we will compare with some more expressive but
less e�cient streaming models.
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2.1 G O L D PA N N I N G

Let us now describe a situation in which we would like to execute many queries over the
same dataset. To avoid mixing up the details of streaming with the details of the example, we
initially assume that the dataset �ts in memory as a list, and write our queries as list programs.
�roughout the thesis, we will refer back to this example as gold panning.

Suppose we have a �le containing the historical prices for a particular corporate stock.
�e �le contains many records; each record contains a date and the average price for that
day, and all the records in the �le are sorted chronologically. �e records are stored on-disk
in comma-separated values (CSV) format, and are represented in memory by the following
Haskell datatype:

data Record = Record

{ time :: Time

, price :: Double }

We wish to appraise this stock to see whether it was, historically, a worthy investment.
One quality of a good investment is that its price increases over time; we can quantify any
increase by computing the linear regression of the price over time, using the coe�cient of
the line to approximate increase or decrease over time. It is very convenient to be able to
summarise growth with one number, but stock prices rarely act as lines. While a line might
be a good approximation for a stable stock price with few dips and bumps, it is a poor ap-
proximation for an unstable stock. Fortunately, we can use a statistical tool called the Pearson
correlation coe�cient to determine how linear the relationship is, and therefore how good the
approximation is — which may be valuable information about the stock price in itself as well
as denoting the con�dence of our analyses. �e Pearson correlation coe�cient is de�ned as
the covariance of price with time, divided by the product of the standard deviation of price
and the standard deviation of time. We can also de�ne the Pearson correlation coe�cient geo-
metrically: it is the cosine of the angle between the regression line of price over time, and the
regression line of time over price.

Figure 2.1 shows the �uctuations of the example stock’s price over a year, along with the
regression line of price over time in red, and the regression line of time over price in blue. �e
stock price is far from a perfect line, but does show a clear upwards trend. In this graph, the
correlation is represented by the angle between the red and blue regression lines; the smaller
the angle between the two regression lines, the more closely correlated the two are, and the
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Figure 2.1: Analysis of a stock over a year

‘straighter’ the relationship is. �e angle here corresponds to a correlation of 0.94, in a range
from negative one to positive one.

Listing 2.1 contains the implementations of functions to compute the correlation coe�-
cient, directly translated from the mathematical de�nitions. �is implementation performs
multiple passes over the input list, and is not numerically stable.

We can implement a more stable one-pass correlation algorithm using the covariance algo-
rithm speci�ed in Welford (1962). Although the details are quite complicated, we can express
this algorithm as a fold over a list. �e fold uses an initial state, correlation_z, and for each
element updates the state with a worker function correlation_k. �e one-pass correlation
algorithm keeps track of the running means and standard deviations of both axes, which are
used to compute the correlation. As such, the fold state contains more than just the correlation.
A�er the fold has completed, we perform an extraction function, correlation_x, to extract the
correlation from the state. Listing 2.2 contains the implementations of the fold worker func-
tions for computing the correlation: correlation_x, correlation_k and correlation_z. With
these worker functions, we can compute the correlation as follows:

correlation :: [(Double,Double)] → Double

correlation = correlation_x (foldl correlation_k correlation_z)

We can implement a function to compute the regression similarly; we omit the de�nitions
of the regression worker functions. �e de�nition of the function to compute the regression
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correlation :: [(Double,Double)] → Double
correlation xys = covariance xys / stddev (map fst xys) ∗ stddev (map snd xys)

stddev :: [Double] → Double
stddev xs = sqrt (mean (map (ˆ2) xs) / mean xs ∗ mean xs)

covariance :: [(Double,Double)] → Double
covariance xys =
let xy = map (λ(x,y) → x ∗ y) xys
in mean xy - mean (map fst xys) ∗ mean (map snd xys)

mean :: [Double] → Double
mean xs = sum xs / fromIntegral (length xs)

Listing 2.1: Multiple-pass correlation implementation

type State = (Double, Double, Double, Double, Double, Double)
correlation_z :: State
correlation_z = (0,0,0,0,0,0)

correlation_k :: State → (Double,Double) → State
correlation_k (mx, my, sd, sdX, sdY, n) (x,y) =
let n' = n + 1

dx = x - mx
dy = y - my
mx' = mx + (dx / n')
my' = my + (dy / n')
dx' = x - my'
dy' = y - my'
sd' = sd + dx ∗ dy'
sdX' = sdX + dx ∗ dx'
sdY' = sdY + dy ∗ dy'

in (mx',my',sd',sdX',sdY',n')

correlation_x :: State → Double
correlation_x (mx, my, sd, sdX, sdY, n) =
let varianceX = sdX / n

varianceY = sdY / n
covariance = sd / n
stddevX = sqrt varianceX
stddevY = sqrt varianceY

in covariance / (stddevX ∗ stddevY)

Listing 2.2: One-pass correlation implementation



2.1 G O L D PA N N I N G 9

uses the fold worker functions regression_x for extracting the �nal result, regression_z for
the initial state, and regression_k to update the state for every input element:

regression :: [(Double,Double)] → Line

regression = regression_x (foldl regression_k regression_z)

Now that we have functions to compute the linear regression and the correlation, we can
compute both at the same time. �e following program returns a pair containing the correla-
tion and regression:

priceOverTime :: [Record] → (Line, Double)

priceOverTime stock =

let timeprices = map (λr → (daysSinceEpoch (time r), price r)) stock

in (regression timeprices, correlation timeprices)

Both regression and correlation functions take a list of pairs of numbers, so we �rst
convert the Record values to pairs of numbers using the map combinator. Although this is a
single program, it computes two values. Whether we think of this program as one query or
two is inconsequential. �e important part is that this program, as it is wri�en, requires two
traversals over the timeprices list. List programs can traverse the same list many times; in
Section 2.2 we shall see how multiple traversals is a problem for streaming programs.

Stock prices rarely follow linear functions of time; even the best stocks go down once in
a while, and sometimes the market as a whole can go down. Furthermore, even though this
stock appears to be doing quite well if we consider it in isolation, we do not know whether it
is an exceptional stock or an exceptional market. We are interested in comparing against the
rest of the market as well.

To compare against the rest of the market, we have another �le of records containing the
average price of a representative subset of stocks. �is representative subset is called a market
index. We want to compare each day’s price for our stock against the average price for the
corresponding day in the index.

Figure 2.2a shows the linear regression and correlation of the market index price over time,
while Figure 2.2b shows the linear regression and correlation of the stock price from Figure 2.1
compared to the market index price. �e comparison of stock price to market index price
compares each day’s stock price against the corresponding day’s market index price. Each
day is visualised as the percentage di�erence between the day’s stock price and the mean
stock price for the period for the y axis, compared to the percentage di�erence between the
day’s market index price and the mean market index price for the period for the x axis. We can
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Figure 2.2: Analysis of a stock compared to market index

inspect the regression lines to see how the stock price tends to react to movement in the market
index price. Both regression lines are slightly steeper than forty-�ve degrees, indicating that
the stock price has grown faster than the market index price. �e correlation, represented by
the angle between the two regression lines, indicates a relatively strong linear relationship
between the stock price and the market index price.

We can compute the comparison of stock price over market index price with the following
program:

priceOverMarket :: [Record] → [Record] → (Line, Double)

priceOverMarket stock index =

let joined = join (λs i → compare (time s) (time i)) stock index

prices = map (λ(s,i) → (price s, price i)) joined

in (regression prices, correlation prices)

�e join operator matches each stock day against the corresponding market index day,
and discards the data for any days missing from either input. We then extract both prices
from the joined result and compute the regression and correlation. As with priceOverTime,
this function requires two traversals of the prices list.

Since the analyses priceOverTime and priceOverMarket both provide useful information,
we will perform both. It is just as easy to combine these queries together as it was to compute
both the correlation and the regression. �e following program computes both:
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Figure 2.3: Dependency graph for queries priceOverTime and priceOverMarket

priceAnalyses :: [Record] → [Record] → ((Line, Double), (Line, Double))

priceAnalyses stock index =

let pot = priceOverTime stock

pom = priceOverMarket stock index

in (pot, pom)

Figure 2.3 shows the dependency graph for both queries. �e nodes in this graph are the
two input lists stock and index, and the list operators in each query. �e two input lists are
drawn inside boxes to distinguish them from the operator nodes. �e edges are dependencies
from one value to another; the join operator uses both the stock and index lists, so there
are arrows from both stock and index to the join node. Edges that denote intermediate lists
between two operators are labelled with the variable name used in the list program. Below
the bo�om of the graph, not shown, the results of the four regression and correlation oper-
ators are paired together to construct the return value. �e large boxes bisecting most of the
nodes denote which nodes are de�ned inside the priceOverTime function and which are de-
�ned in priceOverMarket. �is dependency graph is a directed acyclic graph: the nodes stock,
timeprices, and prices have multiple children; joined has multiple parents. Having multiple
children means a list is mentioned multiple times, which generally corresponds to requiring
multiple traversals of the list in a sequential evaluation.
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Although a sequential evaluation of this list program requires multiple traversals of the
input, we can rewrite it to be a single-pass streaming program. Our choice of streaming model
dictates how di�cult this rewrite will be.

2.2 P U L L S T R E A M S

�e �rst streaming model we look at are pull streams. Pull streams are used in the Volcano
model of query execution (Graefe, 1989), where they are known as iterators; elsewhere, they
can be known as cursors. �e essence of a pull stream is that a consumer can pull on it to
retrieve the next value from the producer. We represent a pull stream as a function with no
parameters which either returns Just a value, or returns Nothing when the stream is �nished.
Since the function may need to read from a �le or update some local state, it is expressed as
an IO computation:

data Pull a = Pull (IO (Maybe a))

With this stream representation, we can implement analogues of the list combinators used
in the example queries. We can map a function over a pull stream with the following de�nition:

map :: (a → b) → Pull a → Pull b

map a_to_b (Pull pull_a) = Pull pull_b

where

pull_b = do

maybe_a ← pull_a

return (case maybe_a of

Nothing → Nothing

Just a → Just (a_to_b a))

Between unwrapping and wrapping the Pull constructor, the map function takes a func-
tion pull_a to compute the input stream values, and returns a function pull_b to compute the
transformed stream values. Whenever the consumer of map calls pull_b to ask for the next
value, pull_b in turn calls pull_a asking for the next value. When the input stream is �nished,
pull_b returns Nothing to denote that the output stream is also �nished. Otherwise, pull_b
applies the transform function a_to_b to the pulled element and returns the transformed ele-
ment. In pull streams, consumers ask producers for the next value, and control �ow bubbles
up from consumer to producer.
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We can also implement the fold combinator, foldl. Because pull streams can perform
e�ects such as reading from a �le, foldl for pull streams needs to be able to perform IO com-
putations, as re�ected in the result type:

foldl :: (b → a → b) → b → Pull a → IO b

foldl k z (Pull pull_a) = loop z

where

loop state = do

maybe_a ← pull_a

case maybe_a of

Nothing → return state

Just a → loop (k state a)

�is implementation of foldl calls the local function loop with the initial state of z. �e
loop function repeatedly pulls from the pull function, pull_a, updating the state for every
element in the input stream.

Consuming a stream is an e�ectful operation. Every time we call the pull function we get
the next element, which means the pull function must somehow keep track of which value
it is up to. For example, a pull function which reads from a �le holds a �le-handle, which in
turn refers to some mutable state about the �le o�set. Every time we read from the �le, the
�le o�set is incremented. If two consumers were to ask the same pull function for the next
element one a�er another, they would get di�erent elements of the stream.

Listing 2.3 shows the type signatures of the pull stream versions of the folds we de�ned on
lists earlier, regression and correlation, as well as the implementation of the join combinator.
�e correlation and regression functions can be implemented much like their list versions,
using the pull implementation of foldl.

�e join function executes by reading a value from each input stream and comparing the
values using the given comparison function. Both input streams are sorted by some key, which
the comparison function extracts and compares. If the keys are equal, join returns the pair.
Otherwise, join pulls again from the input stream with the smaller key: since both streams are
sorted by the key, if one stream has a higher key than the other, it means the stream with the
higher key does not have a corresponding value for the smaller key. In our priceOverMarket

example, the �les are sorted by date and the comparison function compares the dates. We can
join the two �les in a streaming manner because both input �les are already sorted by date; if
the �les were not sorted by date, we would need to perform a non-streaming join, for example
a hash-join, which stores the entirety of one input in a hashtable in memory.
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correlation :: Pull (Double,Double) → IO Double
regression :: Pull (Double,Double) → IO Line

join :: (a → b → Ordering) → Pull a → Pull b → Pull (a,b)
join comparekey (Pull pull_a) (Pull pull_b) = Pull (do

a ← pull_a
b ← pull_b
go a b)

where
go (Just a) (Just b)
= case comparekey a b of

EQ → return (Just (a,b))
LT → do
a' ← pull_a
go a' b

GT → do
b' ← pull_b
go a b'

go _ _ = return Nothing

Listing 2.3: Pull stream combinators

We cannot naively translate the list version of priceOverTime to use these streaming com-
binators, because the list version required multiple traversals. �e following program will not
compute the correct result because it uses the timeprices stream twice:

priceOverTime_pull_bad :: Pull Record → IO (Line, Double)

priceOverTime_pull_bad stock = do

let timeprices = Pull.map (λr → (daysSinceEpoch (time r), price r)) stock

r ← Pull.regression timeprices

c ← Pull.correlation timeprices

return (r, c)

Computing the regression pulls all the values from the timeprices stream and folds over
them until the stream is exhausted. A�er computing the regression, the program computes the
correlation of the same input stream. When the correlation tries to read the timeprices stream
again, the stream has already been exhausted. For this reason, we say that pull streams cannot
be used multiple times. �is single-use restriction also exists in other streaming models, such
as Java 8 Streams (Reese, 2014) and Strymonas (Biboudis, 2017). Some streaming models, such
as Iteratees (Kiselyov, 2012), do not explicitly state any single-use restriction, but exhibit the
same potentially surprising behaviour when multiple consumers compete for elements from
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the same stream. In Section 2.4 we shall see a streaming model that is more strict and requires
that streams be used exactly once and cannot be discarded, a property commonly known as
linearity.

Since our input streams are sourced from �les stored on disk, we could imagine rewinding
the input streams and re-reading the �les again from the start. If we were to rewind the stream,
all the e�ects and all the work that went into computing the stream the �rst time would have
to be done a second time: for this example, we would at least need to parse each line in the
�le again. Rewinding would allow this program to compute the correct result, but it is only
feasible for persistent input streams. Real-time inputs such as sensor data may accumulate too
quickly to be stored inde�nitely, and for network-backed storage, the extra communication
time may make performing multiple reads impractical.

Fortunately, because regression and correlation are both computed by folds, we can com-
bine the two into a single fold. In the following program, the fold worker function both_k and
initial state both_z compute both regression and correlation at the same time:

regressionCorrelation_pull :: Pull (Double,Double) → IO (Line, Double)

regressionCorrelation_pull stream = do

(r,c) ← Pull.foldl both_k both_z stream

return (regression_x r, correlation_x c)

where

both_k (r,c) v = (regression_k r v, correlation_k c v)

both_z = (regression_z, correlation_z)

priceOverTime_pull :: Pull Record → IO (Line, Double)

priceOverTime_pull stock = do

let timeprices = Pull.map (λr → (daysSinceEpoch (time r), price r)) stock

regressionCorrelation_pull timeprices

�is program computes the correct value in a single traversal of the input stream. To
write this version, we have had to manually look inside the de�nitions of correlation and
regression and duplicate them. �is was relatively easy because both use-sites were folds.
�is process of combining two folds into one is a simple instance of a transform known as
tupling. Transforms such as (Hu et al., 1997, 2005; Chiba et al., 2010) can automatically perform
tupling for some programs, but do not support combinators with multiple input streams such
as join or append. We discuss tupling further in Section 6.2.
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Let us turn our a�ention to the second query, priceOverMarket. We can use the same
function regressionCorrelation_pull that we used above, like so:

priceOverMarket_pull :: Pull Record → Pull Record → (Line, Double)

priceOverMarket_pull stock index =

let joined = Pull.join (λs i → compare (time s) (time i)) stock index

let prices = Pull.map (λ(s,i) → (price s, price i)) joined

regressionCorrelation_pull prices

We now have pull stream implementations of both priceOverTime and priceOverMarket,
but when we wish to compute both at the same time, we cannot simply pair them together
as we did in the list implementation of priceAnalyses — this time because the stock stream is
mentioned multiple times.

When we implemented the pull stream version of priceOverTime, we had to look at the two
occurences where the timeprices stream had been used. We had to inline both places where
the stream was used and manually write a new function to do the work of both. Both were
fairly simple folds. Doing the same for priceAnalyses is more complicated: we would need to
implement a special version of the join combinator used inside priceOverMarket, which not
only joins the two input streams together, but also computes the regression and correlation of
its stock stream at the same time.

It might appear that, since the joined stream contains pairs from both stock and index,
we could use this to compute the correlation and regression of the the stock component alone.
Such a query would be easier to combine with priceOverMarket, but this query would com-
pute a di�erent result, since the joined stream only contains elements from stock for which
corresponding days exist in the index stream.

Pull streams are not helping us execute multiple queries at a time. If we wish to execute
multiple queries in a single-pass, we need to be able to mention streams multiple times. To
execute these shared streams, each time we read from a shared stream, we need some way to
distribute this element among all of the shared stream’s consumers.

2.2.1 Streaming overhead

�e pull stream representation can incur some overhead due to the need to wrap elements in
Maybe constructors. For simple combinators such as map, however, the overhead can be opti-
mised away by performing program transformation. Consider the following function, which
applies two worker functions to the elements in a stream:
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map2 :: (a → b) → (b → c) → Pull a → Pull c

map2 f g stream_a

= let stream_b = Pull.map f stream_a

stream_c = Pull.map g stream_b

in stream_c

We could write this program in an equivalent way by composing the two functions together
and performing a single map: Pull.map (g ◦ f) stream_a. Fortunately, a�er some optimisation,
both programs incur the same amount of overhead. To demonstrate concretely the overhead
of composing stream transformers, we take the de�nition of Pull.map and inline it into the
use-sites in stream_b and stream_c above. A�er removing some wrapping and unwrapping of
Pull constructors, we have the following function:

map2 f g (Pull pull_a) = Pull pull_c

where

pull_b = do

a ← pull_a

return (case a of

Nothing → Nothing

Just a' → (Just (f a')))

pull_c = do

b ← pull_b

return (case b of

Nothing → Nothing

Just b' → (Just (g a')))

When we pull from pull_c, it asks pull_b for the next element, which in turn asks pull_a.
When there is a stream element to process, pull_a constructs a Just containing the stream
element and returns it to pull_b. �is Just constructor is then destructed by pull_b so the
function f can be applied to the element, before wrapping the result in a new Just which is
returned to pull_c. Now, pull_c must perform the same unwrapping and wrapping on the
returned value, even though we statically know that whenever pull_a returns a Just, pull_b
must also return a Just.

To take advantage of our static knowledge and remove the super�uous wrapping and un-
wrapping, we �rst transform the program by inlining pull_b into where it is called in pull_c.
�en, using the monad laws, we can rewrite the return statement containing the case expres-
sion from pull_b, nesting this case expression inside the scrutinee of the other case expression:
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map2 f g (Pull pull_a) = Pull pull_c

where

pull_c = do

a ← pull_a

return (case (case a of

Nothing → Nothing

Just a' → (Just (f a')))

Nothing → Nothing

Just b' → (Just (g b')))

�e nested case expression returns statically-known constructors of Nothing or Just, which
the outer case expression immediately matches on. We remove the intermediate step using the
case-of-case transform (Jones and Santos, 1998), which converts these nested case expressions
to a single case expression:

map2 f g (Pull pull_a) = Pull pull_c

where

pull_c = do

a ← pull_a

return (case a of

Nothing → Nothing

Just a' → (Just (g (f b))))

By applying some standard program transformations, we have combined the two maps
into one, and we have removed the overhead of additional constructors. Optimising compilers
perform similar transforms as part of their suite of general purpose optimisations (Jones, 1996).

For other operations, the streaming overhead can be harder to remove. Listing 2.4 shows
the implementation of the filter combinator. �e function pull_a' pulls an element and
checks whether it satis�es the given predicate. If the element does not satisfy the predicate,
pull_a' performs a recursive loop to check the next element. �e recursion in this function
makes it harder for the compiler to inline and optimise, and the overhead may not be removed.
Stream fusion (Cou�s et al., 2007), which uses a more sophisticated pull stream representation,
allows pull functions to return a skip constructor in place of �ltered-out elements, instructing
the consumer to pull again. �e stream fusion implementation of filter instructs the con-
sumer to pull the next element when the predicate fails instead of recursively looping, and is
easier to inline and optimise. Compilers that use an intermediate language based on sequent
calculus may be able to inline and optimise recursive functions directly, without needing to
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filter :: (a → Bool) → Pull a → Pull a
filter predicate (Pull pull_a) = Pull pull_a'
where
pull_a' = do

a ← pull_a
case a of
Nothing → return Nothing
Just a' → if predicate a'

then return (Just a')
else pull_a'

Listing 2.4: Pull implementation of filter

convert stream operations to non-recursive functions (Maurer et al., 2017). We discuss other
representations of pull streams in Section 6.1. �ese other representations of pull streams, as
well as the representation used by stream fusion, do not a�ord extra expressivity over the
pull streams described above; the same set of combinators can be implemented with the same
asymptotic space and time behaviour, but with improved constant factors.

2.3 P U S H S T R E A M S

Push streams are the conceptual dual of pull streams: rather than the consumer pulling ele-
ments from the producer, in push streams the producer pushes elements to the consumer. As
we shall see, the advantage of push streams is that they enable stream elements to be shared
among multiple consumers: a producer can push the same value to multiple consumers. �is
sharing of elements makes it easier to perform multiple queries over the same input stream.

A push stream is a function which accepts a (Maybe a) and performs some IO e�ect, for
example writing to a �le, or writing to some mutable state. �is could be represented by the
type (Maybe a → IO ()), which is the dual of the pull stream (IO (Maybe a)). However, this
representation provides no direct way to retrieve a result from a consumer: for example, the
return value of our correlation or regression. �is is a common enough use-case that it justi�es
a departure from the conceptual clarity of using the exact dual. We instead use the following
representation:

data Push a r = Push

{ push :: a → IO ()

, done :: IO r }
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We augment the de�nition with an extra type parameter, r, for the result type. Since
the result only becomes available at the end of the stream, we separate the two cases of the
(Maybe a) argument into two functions, push and done. When the producer has an element to
give to the consumer, the producer calls push. When the stream is �nished, the producer calls
done to retrieve the result.

In this representation, it is the consumers that are values of type (Push a r): they are sinks
into which we can push values of type a, and eventually get an r back. �is inversion of control
for pull streams leads to a fundamental di�erence in how we program with push streams, and
what we can express with push streams.

�e push streams described here are analogous to the sinks described in Bernardy and
Svenningsson (2015) and Lippmeier et al. (2016), albeit with a slightly di�erent representation.
In this thesis, we use the push and pull terminology of Kay (2009). However, the ‘push’ in
‘push streams’ is di�erent from the ‘push’ in the ‘push model’ used for database execution, as
described in Neumann (2011). In the Neumann push model, a stream producer is represented
as a continuation which takes a sink to push values into. Once the consumer provides a sink,
the producer repeatedly pushes all its values to the provided sink. �e control-�ow for the
Neumann push model is the same as for push arrays, as described in Claessen et al. (2012).
Like pull streams, the Neumann push model does not support executing multiple queries con-
currently; unlike pull streams, the Neumann push model does not support combinators with
multiple inputs except append. We discuss the Neumann push model in more detail later in
Section 6.3.

We cannot map a function over the elements in push streams in the way that we would
with lists or pull streams, because the de�nition of (Push a r) uses the stream element type a

as a function argument, rather than as a function result. Instead, we implement contravariant-
map, or contramap, like so:

contramap :: (a → b) → Push b r → Push a r

contramap a_to_b bs = Push push_a done_a

where

push_a a = push bs (a_to_b a)

done_a = done bs

�e contramap function takes a function to convert values of type a to values of type b and
a sink to push values of type b to, returning a sink which can receive values of type a. When a
producer tries to push an input element into the returned stream, the push_a function converts
this element to a value of type b and pushes it further on to the consumer of b. Unlike with
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consumers of pull streams, a push consumer has no way of choosing among multiple inputs.
In the push stream model, the producer is in control while the consumer passively waits for
its next input value.

We do in fact have a regular (covariant) map function for push streams, but this transforms
the result returned at the end of the stream, rather than the input stream elements. We map a
function over the result like so:

map_result :: (r → r') → Push a r → Push a r'

map_result r_to_r' push_a = Push (push push_a) done_a'

where

done_a' = do

r ← done push_a

return (r_to_r' r)

�e type of foldl for push streams is similar to pull streams, except instead of taking the
pull stream to read from, it returns a push stream which will eventually return the result.
�e return value is an IO computation containing the push stream because we use a mutable
reference to store the current state, which must be allocated before returning the stream. As
values are pushed into the sink, the mutable reference containing the fold state is updated with
the current result of the fold:

foldl :: (b → a → b) → b → IO (Push a b)

foldl k z = do

ref ← newIORef z

let push_a a = do

state ← readIORef ref

writeIORef ref (k state a)

let done_a = readIORef ref

return (Push push_a done_a)

As with the list and pull stream implementations, we can use this foldl function to imple-
ment correlation and regression.

In order to share a stream between multiple consumers, we need some way to broadcast
messages and push each element to many consumers. We can broadcast to two consumers by
combining two consumers into one before connecting it to a producer. �e following function,
dup_ooo, duplicates a stream among two consumers, and returns a pair containing both results.
We call this operation dup_ooo because it duplicates elements into two output sinks (push
streams), returning a new output sink; the reason for this name will become apparent when
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we see other ways to duplicate streams in Section 2.4. �e implementation of dup_ooo is as
follows:

dup_ooo :: Push a r → Push a r' → Push a (r,r')

dup_ooo a1 a2 = Push push_a done_a

where

push_a a = do

push a1 a

push a2 a

done_a = do

r ← done a1

r' ← done a2

return (r, r')

We could also use the applicative functor (McBride and Paterson, 2008) instance for push
streams to combine consumers together, specifying how to transform and combine the results.
�e applicative functor implementation is similar to the dup_ooo function speci�ed above. �is
dup_ooo function could then be wri�en equivalently as (dup_ooo a1 a2 = (,) <$> a1 <∗> a2).

We can use dup_ooo and contramap to implement unzip, which deconstructs a stream of
pairs into a pair of streams:

unzip :: Push a r → Push b r' → Push (a,b) (r,r')

unzip push_a push_b = dup_ooo (contramap fst push_a) (contramap snd push_b)

Pairs of a and b �ow from the returned push stream into the argument streams. When
the stream is over, the results are paired together and �ow from the argument streams to
the returned stream. �is inverted control �ow is because the stream representation makes
operations on the elements contravariant, while operations on the stream results are covariant.

With these combinators, we can write the priceOverTime query using push streams:

priceOverTime_push :: IO (Push Record (Line,Double))

priceOverTime_push = do

reg ← Push.regression

cor ← Push.correlation

let cm = Push.contramap

(λr → (daysSinceEpoch (time r), price r))

(Push.dup_ooo reg cor)

return cm
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�is program computes both correlation and regression in a streaming fashion. In com-
parison to the list version of priceOverTime, we have explicitly combined both consumers and
reversed the control �ow.

Unfortunately, we cannot implement a streaming version of priceOverMarket with push
streams alone, because it requires joining two input streams by date. Recall the join combi-
nator, which takes two input streams and retrieves a value from each. At every step the join

combinator chooses which stream to pull from, pulling from the stream with the smaller value.
With push streams, a consumer cannot choose which input stream to pull from, or when: the
consumer is a function waiting to be called with its input elements, always ready to accept
elements as they come.

�is inability to join two streams by date is one instance of a more general limitation of
push streams. Push streams also cannot implement zip, which pairs two inputs together, be-
cause the consumer needs to control the computation to alternate between each input. Except
for one special case, push streams do not support combinators with multiple inputs. �e spe-
cial case is that a push stream can react to multiple inputs in the order they are received. As a
list program, this is similar to taking two lists and at each step non-deterministically choosing
which list to pull an element from. In certain circumstances we can control the push order
and use this merge to append two streams. Because the push order is controlled outside of
the merge, appending two streams in this way separates the append logic from the merge
combinator which de�nes the appended stream.

We shall see more examples of push programs in Chapter 3.

2.4 P O L A R I S E D S T R E A M S

Stream sharing allows push streams to support multiple queries by broadcasting the elements
to multiple consumers, but they do not support streaming operators with multiple inputs,
except for non-deterministic merge; pull streams support operators with multiple inputs, but
they do not support multiple queries (Kay, 2009). Combining pull and push streams together
in the same program, in the form of polarised streams, allows us to support multiple inputs
and multiple queries (Lippmeier et al., 2016).

Although we cannot share the elements of a pull stream among multiple pull consumers,
we can share the elements of a pull stream among one push consumer and one pull consumer.
We call this operation dup_ioi because it duplicates an input source (pull) into an output sink
(push), returning a new input source (pull):
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dup_ioi_ignore_result :: Pull a → Push a r → Pull a

dup_ioi_ignore_result (Pull pull_a) push_b = Pull pull_a'

where

pull_a' = do

v ← pull_a

case v of

Nothing → do

_ ← done push_b

return Nothing

Just a → do

push push_b a

return (Just a)

We achieve this duplication by constructing a new pull stream which, when pulled on,
pulls an input element from its source pull_a. �e pulled element is pushed into the sink
push_b, before being returned to the caller as an element of the constructed pull stream. In this
implementation, the result of the push stream is ignored because the pull stream representation
has no way to return a result at the end of the stream.

Encoding the result of a stream inside the stream itself is not important for single-consumer
pull streams, because it is usually the consumer of the stream that computes the result. When
mixing stream representations to allow multiple consumers, however, we need to be able to
capture the result of all the consumers. We extend the pull stream representation so that
instead of returning a Maybe and using Nothing to signal the end of the stream, streams now
return an Either with (Left a) to signal an element and (Right r) to signal the result at the
end of the stream:

data PullResult a r = PullResult (IO (Either a r))

With this extended pull stream representation, we can implement a version of dup_ioi

that keeps the results of the input stream and the output stream, and pairs them together. �is
version of dup_ioi is shown in Listing 2.5.

Modifying dup_ioi_ignore_result to work on the new representation only required chang-
ing the constructors for the stream and adding the return value; other combinators are modi-
�ed similarly. We use the same naming convention for su�xes, for example map_i for mapping
pull streams, and map_o for contravariantly mapping push streams. When consuming a pull
stream by folding over it, we return the fold result as well as the stream result. �e type sig-
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dup_ioi :: PullResult a r → Push a r' → PullResult a (r,r')
dup_ioi (PullResult pull_a) push_b = PullResult pull_a'
where
pull_a' = do

v ← pull_a
case v of
Right r → do
r' ← done push_b
return (Right (r,r'))
Left a → do
push push_b a
return (Left a)

Listing 2.5: Polarised implementation of dup_ioi

nature for foldl_i changes to include the stream result; the implementation change is similar
to the change for dup_ioi:

foldl_i :: (b → a → b) → b → PullResult a r → IO (b,r)

We can also copy elements from a pull stream to a push stream: we call this operation
draining the pull stream. To drain a stream, we loop over the elements in the pull stream and
push each one into the push stream. At the end, we return a pair of the results of both streams:

drain_io :: Pull a r → Push a r' → IO (r, r')

drain_io (Pull pull_a) push_a = loop

where

loop = do

v ← pull_a

case v of

Left a → do

push push_a a

Right r → do

r' ← done push_a

return (r, r')

We can combine drain_io and dup_ooo together to duplicate a pull stream into two push
streams, which we call dup_ioo:

dup_ioo :: Pull a r → Push a r' → Push a r'' → IO (r,(r',r''))

dup_ioo pull0 push1 push2 = drain_io pull0 (dup_ooo push1 push2)



26 A B R I E F TA X O N O M Y O F S T R E A M I N G M O D E L S

join_iii :: (a → b → Ordering) → PullResult a r
→ PullResult b r' → PullResult (a,b) (r,r')

join_iii comparekey (PullResult pull_a) (PullResult pull_b) = PullResult (do
a ← pull_a
b ← pull_b
go a b)

where
go (Left a) (Left b)
= case comparekey a b of

EQ → return (Left (a,b))
LT → do
a' ← pull_a
go a' (Left b)

GT → do
b' ← pull_b
go (Left a) b'

go (Right a) (Right b) = return (Right (a,b))
go (Left _) (Right b) = do

a' ← pull_a
go a' (Right b)

go (Right a) (Left _) = do
b' ← pull_b
go (Right a) b'

Listing 2.6: Polarised implementation of join_iii

We can also implement dup_oii by �ipping the arguments of dup_ioi, and compose the
various dup functions together to duplicate an arbitrary number of outputs. With dup_ioi,
dup_oii, dup_ioo and dup_ooo, we can duplicate a stream when there is no more than one pull
consumer. Joining multiple input streams together, as in the join combinator, is the dual: there
can be no more than one push producer. Recall that the join combinator required both inputs
to be pull streams, and could not be implemented with push streams alone. With the polarised
naming convection, this version of join is called join_iii. Because the input streams have
result values, we ensure that the joined stream’s result contains the results of both inputs. To
compute both results, when one stream ends before the other we drain the un�nished stream
until we reach the result. Other than this draining, the implementation of join_iii shown in
Listing 2.6 follows the implementation of join.

We can also join two streams when one is a pull stream and the other is a push stream:
this is called join_ioo. Conceptually, this combinator has an input pull stream of type a and
an input push stream of type b, with an output push stream of pairs of a and b. �e de�nition
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join_ioo :: (a → b → Ordering) → PullResult a r
→ Push (a,b) r' → Push b (r,r')

join_ioo comparekey (PullResult pull_a) push_ab = Push push_b done_b
where
push_b b = do

a ← pull_a
case a of
Left a' → case comparekey a b of

EQ → push push_ab (a,b)
LT → push_b b
GT → return ()

Right _ → return ()
done_b = do

a ← pull_a
case a of
Left _ → done_b
Right a' → do
b ← done push_ab
return (a,b)

Listing 2.7: Polarised implementation of join_ioo

for join_ioo is given in Listing 2.7. �e output push stream is given as an argument while the
input push stream is the return value.

In the implementation of join_ioo, the returned push stream accepts values of type b.
When a new value is pushed, it repeatedly reads values from the input pull stream until the
pulled value is equal to or greater than the pushed value using the given ordering function to
compare the keys. When the ordering function says the two keys are equal, it pushes the pair
to the output stream. When the pull stream ends before the push stream, this implementation
reads the end of the pull stream multiple times; the pull stream always returns the stream
result a�er the end of the stream. Other multiple-input combinators can be inverted similarly
to support pull-push-push (_ioo) and push-pull-push (_oio) versions.

We can implement both priceAnalyses queries — priceOverTime and priceOverMarket —
by mixing pull and push streams. We assign a polarity of push or pull to all streams in both
queries, starting with the input streams. Figure 2.4 shows the dependency graph with polarised
combinators and explicit duplications. �e polarity of each stream is depicted as a �lled or
un�lled circle. Filled circles • represent pull streams because they always contain the next
element or the result. Un�lled circles ◦ represent push streams because they are a hole into
which elements can be pushed.
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Figure 2.4: Polarised dependency graph for priceOverTime and priceOverMarket

We begin by classifying both input streams as pull streams: we can copy elements from
pull stream producers into push stream consumers, but not vice versa. Classifying inputs as
pull streams allows the most �exibility, as consumers of the inputs can still be classi�ed as
either pull or push operators. �e stock input stream is used twice, so at least one of the
use-sites must be classi�ed as push. Since we were able to express priceOverTime entirely as
a push stream computation, we duplicate stock into a push stream for priceOverTime and a
pull stream for priceOverMarket. For priceOverMarket, we can join both pull streams and map
over it. To compute both regression and correlation, one of the folds must be a push; in this
case either consumer can be pull or push. �e decision is inconsequential. �ere are many
di�erent polarity assignments for this program, but they all compute the same result.

Listing 2.8 shows the implementation of this polarised dependency graph for both queries.
�is streaming single-pass implementation requires more complex control-�ow than the list
version. Stream elements �ow “backwards” from function result to argument in the places
where push streams are used, and �ow “forwards” where pull streams are used. When a pull
stream is duplicated into a push stream, the stream results for the push stream are nested
inside the resulting pull stream; recovering these results involves pa�ern-matching on the
nested tuple.
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priceOverTime_o :: IO (Push Record (Line,Double))
priceOverTime_o = do
pot_regres ← regression_o
pot_correl ← correlation_o
let folds = Push.dup_ooo reg cor
let timeprices = map_o (λr → (daysSinceEpoch (time r), price r)) folds
return timeprices

priceOverMarket_ii :: PullResult Record r → PullResult Record r'
→ IO (Line,(Double,(r,r')))

priceOverMarket_ii stock index = do
let joined = join_iii (λs i → compare (time s) (time i)) stock index
let prices = map_i (λ(s,i) → (price s, price i)) joined
pom_regres ← regression_o
let prices' = dup_ioi prices pom_regres
correlation_i prices'

priceAnalyses_ii :: PullResult Record r → PullResult Record r'
→ IO ((Line,Double), (Line, Double))

priceAnalyses_ii stock index = do
pot ← priceOverTime_o
let stock' = dup_ioi stock pot
result ← priceOverMarket_ii stock' index
case result of

(potC,(potR,((r,(pomC,pomR)),r'))) →
return ((potC,potR), (pomC,pomR))

Listing 2.8: Polarised implementation of priceOverTime and priceOverMarket
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zip_ioo :: PullResult a r → Push (a,b) r' → Push b (r,r')
zip_ioo (Pull pull_a) push_ab = Push push_b done_b
where
push_b b = do
a ← pull_a
case a of
Left a' → push push_ab (a',b)
Right _ → return ()

done_b = do
a ← pull_a
case a of
Left _ → done_b
Right r → do
r' ← done push_ab
return (r,r')

Listing 2.9: Polarised implementation of zip_ioo

Assigning polarities is a global analysis, in that we need to inspect the dependency graph
containing all queries, rather than looking at each query or each combinator in isolation. If
we add a new query to priceAnalyses, we need to consider the existing polarities when as-
signing polarities to the new query. Suppose we have an industry index which, like the market
index, contains average prices of a representative subset of stocks. For lists, we can reuse
the priceOverMarket query to compute how closely our stock follows the industry. For po-
larised streams, we cannot reuse priceOverMarket_ii in priceAnalyses_ii to compare the
stock against both indices in a single traversal, because this would require duplicating the
stock stream into two pull consumers. We need to implement another version of the same
query with di�erent polarities: priceOverMarket_oi. Polarised streams are not composible
and can require code duplication.

2.4.1 Diamonds and cycles

Recall that the list de�nition of correlation takes a list of pairs of doubles and performs a fold
over them. We could write another version that takes two lists of doubles and then zips the
two lists together before performing the fold. When correlating values from the same input
list, the list-of-pairs version requires one fewer intermediate list; when correlating values from
di�erent lists, the pair-of-lists version is slightly more convenient. Which version is preferable
depends on the situation, but for lists, the di�erence is usually minor.
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Figure 2.5: Polarised dependency graph with diamond (le�), and control-�ow graph (right)

With polarised streams, we cannot execute priceOverTime with the pair-of-lists version,
although we can assign polarities. �e le�hand side of Figure 2.5 shows the polarised graph
for a hypothetical version of priceOverTime that only computes the correlation and uses zip.
�e zip_ioo combinator, implemented in Listing 2.9, is similar to the join_ioo combinator; it
has an input pull, an input push, and an output push. When the input push stream receives a
value, zip_ioo reads from the pull stream and sends the pair to the output push stream.

Although it is not obvious from the polarised dependency graph, the combinators have
a recursive dependency on each other. �e polarised diagram shows elements �owing down,
but the control �ow for push streams is upwards. �e righthand side of Figure 2.5 shows the
control �ow for the polarised diagram, a�er replacing the edges corresponding to pull streams
with �lled downward arrows and replacing the edges corresponding to push streams with
un�lled upward arrows. In this graph, the recursive dependency is illustrated by the cycle
between dup_ioi, zip_ioo and the two maps. �is cycle complicates translating the graph to
an implementation.

�e incomplete implementation in Listing 2.10 also demonstrates the recursive dependency
between the four operators. �e priceOverTime_c function de�nes a set of stream transformers,
but we have no way to execute this stream transformer and extract the result. �e incomplete
implementation constructs a stream transformer, but does not directly compute the stream
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priceOverTime_c :: PullResult Record r → IO (Double, r)
priceOverTime_c stock =
let stock' :: PullResult Record (Double,r)

= dup_ioi stock prices
times :: PullResult Record (Double,r)

= map_i time stock'
prices :: Push Record Double

= map_o price cor
cor :: Push Record Double

= correlation_io times
in _ −− incomplete: no way to run computation

correlation_io :: PullResult Double r → Push Double (Double, r)
correlation_io stream_a = zip_ioo stream_a correlation_o

Listing 2.10: Incomplete polarised implementation of priceOverTime_c

result. All the combinators are passive combinators, constructing a stream transformer that
responds to push or pull requests rather than actively pulling or pushing. Active combinators
like drain_io and foldl_i actively consume pull streams rather than transforming them, and
return an IO action containing the stream result. Without an active combinator, the query will
not execute. Active combinators can consume pull streams and output to push streams. Active
combinators cannot actively consume push streams, because the control �ow for push streams
is driven by the producer. Similarly, they cannot actively produce pull streams. None of the
combinators in this query can be implemented as active combinators because they all consume
push streams or produce pull streams. Instead we must hand-optimise the program, combining
the duplicate, maps and zip into one combinator, as in the original version of priceOverTime.

2.5 K A H N P R O C E S S N E T W O R K S

�e three streaming models we have seen — pull, push, and polarised streams — di�er essen-
tially in what drives the computation. With pull streams, the consumer drives the computation.
With push streams, the producer drives the computation. With polarised streams, the active
combinator — which may be a pull consumer, a push producer, or even both — drives the
computation. All these systems have one operator driving the computation. When we have
multiple queries to execute, it can be hard to choose just one combinator to drive the entire
computation.
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An alternate streaming model, which allows many operators to control the computation
and supports executing multiple queries, is a Kahn process network. A Kahn process network
is a concurrent process network with restrictions to ensure deterministic execution. Each
combinator inside each query becomes a communicating process in the network. Processes
communicate through input channels from which they can pull values, and output channels
to which they can push values. Each process can have multiple inputs and outputs, and the
process chooses the order to pull from its inputs and push to its outputs.

Concurrent programs can be hard to write and debug because the schedule, which speci-
�es the interleaving of process execution, depends on environmental factors outside the pro-
gram itself — for example, the number of physical processors available, and which other
processes are also being executed. Because the environment is not controlled by the pro-
cesses themselves, we say the schedule is chosen non-deterministically. Likewise, if a program
gives di�erent results for di�erent schedules, we say the result is non-deterministic. Kahn
process networks are a restricted form of static process network where program values can-
not be a�ected by the schedule (Kahn and Mac�een, 1977): the schedule may be chosen
non-deterministically, but the result is still deterministic. Kahn process networks ensure de-
terministic results by imposing restrictions on how processes communicate so that schedul-
ing decisions cannot be observed inside the process. All communication between processes
is through �rst-in-�rst-out channels. �e Kahn process network model speci�cally rules out
processes with shared mutable state, as such a process could non-deterministically compute
di�erent results. If one process were reading from mutable state while another were writing
a new value, then the reading process may get the old value or new value, depending on how
the processes were scheduled. Reading from channels is blocking: processes cannot to peek at
a channel to see whether there are waiting values, because another process might be waiting
to be scheduled and about to push a new value. Channels are wri�en to by a single process,
broadcasting each value to all consumers of the channel. Only one process is ever allowed to
push to a given channel: if two processes were able to push to the same channel at the same
time, the scheduler would have to decide the order in which values were received.

With Kahn process networks, we can implement a process which joins sorted streams by
pulling from each input channel as in the join combinator, and we can share streams among
multiple consumers because pushed values are broadcast to each consumer. We can convert
operators that use both push streams and pull streams to processes. We can also implement a
process that copies values from a pull stream into a channel, and a process that copies values
from a channel into a push stream.
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data Channel a

data Network a
instance Monad Network

data Result a
instance Applicative Result

map :: (a → b) → Channel a
→ Network (Channel b)

join :: (a → b → Ordering) → Channel a → Channel b
→ Network (Channel (a,b))

foldl :: (a → b → a) → a → Channel b
→ Network (Result a)

execute :: Network (Result a) → IO a

Listing 2.11: Types and combinators for Kahn process networks

One version of the Kahn process network model uses bounded channels to ensure that the
entire network executes in bounded memory. Kahn process networks with bounded channels
still compute results deterministically, but can introduce arti�cial deadlocks in cases where the
computation would succeed with a su�ciently large bu�er, but the given bounds are too small.
�ere are dynamic algorithms to identify arti�cial deadlocks at runtime and resolve them by
increasing bu�er sizes (Parks, 1995; Geilen and Basten, 2003).

Listing 2.11 shows the datatypes and type signatures of a Kahn process network implemen-
tation. We leave discussion of the implementation for Chapter 4, and for now focus solely on
this simpli�ed version of the interface. �e Channel type denotes a communication channel be-
tween processes. �e Network monad describes how to construct a process network; execution
is deferred until a�er the entire network has been constructed. �e map and join combinators
have type signatures similar to the list versions, with lists replaced by Channels and the return
value inside the Network monad.

Because execution is deferred, the foldl combinator cannot return the fold result imme-
diately, and the result is wrapped in a Result type. �e Result type describes the result of
executing a process network: it is a promise that the value will be available a�er all the pro-
cesses in the network �nish. �e Result has an applicative functor instance, allowing multiple
results to be combined together. �e execute function takes a process network description
containing the result promise, and executes the processes before extracting the result.
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correlation :: Channel (Double,Double) → Network (Result Double)
regression :: Channel (Double,Double) → Network (Result Line)

priceOverTime :: Channel Record → Network (Result (Line,Double)
priceOverTime stock = do
timeprices ← map (λr → (daysSinceEpoch (time r), price r)) stock
r ← regression timeprices
c ← correlation timeprices
return ((,) <$> r <∗> c)

priceOverMarket :: Channel Record → Channel Record → Network (Result (Line,Double))
priceOverMarket stock index = do
joined ← join (λs i → compare (time s) (time i)) stock index
prices ← map (λ(s,i) → (price s, price i)) joined
r ← regression prices
c ← correlation prices
return ((,) <$> r <∗> c)

priceAnalyses :: Channel Record → Channel Record
→ Network (Result ((Line,Double),(Line,Double)))

priceAnalysis stock index = do
pot ← priceOverTime stock
pom ← priceOverMarket stock index
return ((,) <$> pot <∗> pom)

Listing 2.12: Implementation of priceAnalyses queries as a Kahn process network
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Listing 2.12 shows the priceAnalyses queries implemented as a Kahn process network.
�ere are some di�erences from the list version: the process network is constructed inside the
Network monad and the results are paired together using Result applicative functor instance.
Converting the implementation from the list form to the process network form is almost purely
syntactic, in contrast to the polarity analysis required for polarised streams.

Concurrent process networks have the desired high-level semantics for executing concur-
rent queries, but they do not provide the ideal execution strategy. In Section 2.2.1, we saw that
communication between pull stream combinators involves allocating Maybe values, which can
sometimes be removed by general purpose compiler optimisations (and sometimes not). Com-
munication between processes requires more overhead than allocating Maybe values, and is
not removed by general purpose optimisations. To send a value from one process to another,
the sending process may need to lock the communication channel to ensure that it has exclu-
sive access to the channel, before copying the value into a bu�er where it can be read by the
other process. Concurrent process network implementations amortise the cost of communi-
cation by chunking messages together: instead of sending many messages with one value in
each, chunked communication sends one message containing an array of values. Chunking
reduces the cost of sending messages, but increases memory and cache pressure. Chunk size
determines how many communications are saved, so larger chunks mean less communication
overhead. However, larger chunks also mean that each chunk array requires more memory
and is thus less likely to �t in cache. Since each channel between a pair of processes requires
its own chunk, larger process networks have more chunks in memory at the same time. �e
optimal chunk size is a trade-o� between communication overhead and memory usage, which
is usually found by experimentation.

From a functional programming perspective, small, �ne-grained processes like those used
in our priceAnalysis example are desirable because they allow us to write a process to im-
plement each combinator and compose them together. From an execution perspective, how-
ever, when �ne-grained processes perform more communication than computational work,
the overall performance is dominated by synchronisation and scheduling overheads (Chen
et al., 1990). We can reduce the amount of communication by fusing multiple connected pro-
cesses together into one larger process. �e fused process performs the task of multiple in-
dividual processes, but communicates by local variables instead of channels. In Chapter 4
we describe an algorithm to fuse processes together to reduce overhead. For priceAnalysis,
our algorithm can automatically fuse all the processes together into a single processes. A
single process executes sequentially, so fusing the entire network into a single process re-
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moves any potential speedup from task parallelism, but in our benchmarks in Chapter 5, the
sequential version is faster than the concurrent version even with several processors. O�en, a
well-optimised sequential implementation of a program will consume signi�cantly less power
and cost less to run than a parallel implementation (McSherry et al., 2015).

2.6 S U M M A R Y

We have seen the relative advantages of various streaming models. Pull streams support op-
erators with multiple inputs, and can take advantage of an optimising compiler to reduce
overhead. Push streams support multiple concurrent queries, and are wri�en back-to-front
with explicit duplication for sharing streams. Polarised streams support multiple inputs and
multiple queries, require polarity analysis of the entire dependency graph, and are wri�en
partially back-to-front and partially front-to-back. Kahn process networks support multiple
inputs and multiple queries, and concurrent execution involves communication overhead.

In the next chapter we will see Icicle, a language for specifying push stream queries. Icicle
queries are wri�en front-to-back, and streams can be shared without requiring explicit dupli-
cation. �eries are compiled to folds over push streams which can be executed concurrently.
A�er looking at Icicle, we shall see how Kahn process networks can be executed e�ciently by
fusing processes together (Chapter 4).



38 A B R I E F TA X O N O M Y O F S T R E A M I N G M O D E L S



C H A P T E R 3

I C I C L E , A L A N G U A G E F O R P U S H Q U E R I E S

�is chapter presents Icicle, a domain-speci�c language for writing queries as push streams.
�is work was �rst published as Robinson and Lippmeier (2016), and was performed in collab-
oration with a machine-learning company called Ambiata. At Ambiata, we perform feature
generation for machine-learning applications by executing many thousands of simple queries
over terabytes worth of compressed data.1 For such applications, we must automatically fuse
these separate queries and be sure that the result can be executed in a single pass over the
input. We also ingest tens of gigabytes of new data per day, and must incrementally update
existing features without recomputing them all from scratch. Our feature generation process
is executed in parallel on hundreds of nodes on a cloud-based system, and if we performed nei-
ther fusion nor incremental update then the cost of the computation would begin to exceed
the salaries of the developers.

�e contributions of this chapter are:

• We motivate the use of Icicle by extending the previous “gold panning” queries (Sec-
tion 3.1);

• We present Icicle, a domain-speci�c language that guarantees that any set of queries on
a shared input table can be fused, and allows the query results to be updated as new data
is received (Section 3.2.5);

• We present a fold-based intermediate language, which allows the query fusion trans-
formation to be a simple ma�er of appending two intermediate programs, and exposes
opportunities for common subexpression elimination (Section 3.3);

• We present benchmarks of Icicle compiled code running in production (Section 3.4).

Our implementation is available at https://github.com/amosr/icicle. �is implemen-
tation has been running in production at Ambiata for over two years.

1 In 2018, this was a lot of data.

https://github.com/amosr/icicle
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3.1 G O L D PA N N I N G W I T H I C I C L E

For the following example queries, we extend the daily stock price records from Section 2.1
to contain the open price and the close price for the day. �e queries we write process a sin-
gle input stream of prices for a particular company, and Icicle uses push streams to ensure
that all queries over the same input stream can be fused together. Icicle cannot express the
priceOverMarket example, which uses multiple input streams, but we will return to this lim-
itation in Chapter 4.

Suppose we want to compute the number of days where the open price exceeded the close
price, and vice versa. We also want to compute the mean of the open price for days in which
the open price exceeded the close price. In Icicle, we write the three queries as follows:

table stocks { open : Int, close : Int }

query

more = filter open > close of count;

less = filter open < close of count;

mean = filter open > close of sum open / count;

In the above code, (open > close) and (close < open) are �lter predicates, and count

counts how many times the predicate is true. �e input table, stocks, de�nes the open and
close prices as Ints. In Icicle, input tables have an implicit time �eld and the input stream is
sorted chronologically.

Listing 3.1 shows the same three queries implemented using the push streams from Sec-
tion 2.3. Despite the syntactic di�erences, the two programs have roughly the same structure
in terms of the three queries. �e three instances of count are constructed as monadic IO oper-
ations, because each count uses a separate mutable reference. �e applicative functor syntax
is used to divide the sum by the count in the mean query, because the division is performed on
the result of the push stream. Icicle does not use the applicative syntax, as it uses a modal type
system to infer which computations are performed on the result of the stream, as described in
Section 3.2.6.

In this example, both more and mean compute the count of elements that match the same
�lter predicate. When the same value would be computed by multiple queries, we would in-
stead like to compute the value only once and share the result among all the queries that use
it. Common subexpression elimination (CSE) removes some duplicate computations but, as its
name suggests, it is limited to structural subexpressions (Chitil, 1997b). Neither of the �ltered
counts is a subexpression of the other, so common subexpression elimination will not remove
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data Record = Record
{ time :: Time, open :: Int, close :: Int }

queries :: IO (Push Record (Int,Int,Int))
queries = do
more_count ← count
let more = filter (λr → open r > close r) more_count

less_count ← count
let less = filter (λr → open r < close r) less_count

mean_sum ← foldl (+) 0
mean_count ← count
let mean = filter (λr → open r > close r)

(div <$> contramap open mean_sum <∗> mean_count)

return ((,,) <$> more <∗> less <∗> mean)

Listing 3.1: Push implementation of queries

the duplicate computation. In Icicle, we remove this duplicate work by �rst converting queries
to an intermediate language, described in Section 3.3. �is intermediate language decomposes
the query into individual folds, exposing the opportunities for common subexpression elimi-
nation.

If we were using an existing database implementation, we could convert all three queries to
a single query in a back-end language like SQL, but doing so by hand is tedious and error prone.
As the three queries use di�erent �lter predicates, we cannot use a single SELECT statement
with a WHERE expression to implement the �lter. We must instead li� each predicate to an
expression-level conditional and compute the count by summing the conditional:

SELECT SUM(IF(open > close, 1, 0))

, SUM(IF(open < close, 1, 0))

, SUM(IF(open > close, open, 0))

/ SUM(IF(open > close, 1, 0))

FROM stocks;

Joint queries such as the stocks example can be evaluated in a streaming, incremental
fashion, which allows the result to be updated as we receive new data (Arasu et al., 2003). As
a counter-example, suppose we have a table with two �elds key and value, and we wish to
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�nd the mean of values whose key matches the last one in the table. We might try something
like the following:

table kvs { key : Date; value : Int }

query meanOfLatest

= let k = last key in

filter (key == k) of mean value;

Unfortunately, although the result we desire is computable, the algorithm implied by the
above query cannot be evaluated incrementally. When we are streaming through the table
we always have access to the last key in the stream, but �nding the rows that match this key
requires streaming the table again from the start. We need a be�er solution.

Icicle is related to stream processing languages such as Lucy (Mandel et al., 2010) and
StreamIt (�ies et al., 2002), except we forgo the need for clock and deadlock analysis. Icicle is
also related to work on continuous queries (Arasu et al., 2003), where query results are updated
as rows are inserted into the source table, except we can also compute arbitrary reductions
and do not need to handle deleted source rows. We discuss these points in more detail in
Section 3.5.

3.2 E L E M E N T S A N D A G G R E G AT E S

To allow incremental computation, all Icicle queries must execute in a single pass over the in-
put stream. Sadly, not all queries can be executed in a single pass: the key examples are queries
that require random access indexing, or otherwise need to access data in an order di�erent to
what the stream provides. However, as we saw in the previous section, although a particular
algorithm may be impossible to evaluate in a streaming fashion, the desired value may well be
computable, if only we had a di�erent algorithm. Here is the unstreamable example from the
previous section again:

table kvs { key : Date; value : Int }

query meanOfLatest

= let k = last key in

filter (key == k) of mean value;

�e problem is that the value of last key is only available once we have reached the end
of the stream, but filter needs this value to process the very �rst element in the same stream.
We distinguish between these two access pa�erns by giving them di�erent names: we say
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that the expression (last key) is an aggregate, because to compute it we must have consumed
the entire stream, whereas the �lter predicate is an element-wise computation because it only
needs access to the current element in the stream.

�e trick to compute our average in a streaming fashion is to recognise that filter selects
a particular subset of values from the input, but the value computed from this subset depends
only on the values in that subset, and no other information. Instead of computing the mean of
a single subset whose identity is only known at the end of the stream, we can instead compute
the mean of all possible subsets, and return the required one once we know what that is:

table kvs { key : Date; value : Int }

query meanOfLatest

= let k = last key in

let avgs = group key of mean value in

lookup k avgs

Here we use the group construct to assign key-value pairs to groups as we obtain them,
and compute the running mean of the values of each group. �e avgs value becomes a map
of group keys to their running means. Once we reach the end of the stream we will have
access to the last key and can retrieve the �nal result. Evaluation and typing rules are de�ned
in Section 3.2.5, while the user functions last and mean are de�ned in Section 3.3.

3.2.1 �e stage restriction

To ensure that Icicle queries can be evaluated in a single pass, we use a modal type system
inspired by staged computation (Davies and Pfenning, 2001). We use two modalities, Element
and Aggregate. Values of type Element τ are taken from the input stream on a per-element
basis, whereas values of type Aggregate τ are available only once the entire stream has been
consumed. In the expression (filter (key == k) of mean value), the variable key has type
Element Date while k has type Aggregate Date. A�empting to compile the unstreamable query
in Icicle will produce a type error complaining that elements cannot be compared with aggre-
gates.

�e types of pure values, such as constants, are automatically promoted to the required
modality. For example, if we have the expression (open == 1), and the type-checking environ-
ment asserts that the variable open has type Element Int, then the constant 1 is automatically
promoted from type Int to type Element Int.
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3.2.2 Finite streams and synchronous data �ow

In contrast to synchronous data �ow languages such as Lustre (Halbwachs et al., 1991), the
streams processed by Icicle are conceptually �nite in length. Icicle is fundamentally a query
language, that queries �nite tables of data held in a non-volatile store, but does so in a stream-
ing manner. Lustre operates on conceptually in�nite streams, such as those found in real-time
control systems (like to �y aeroplanes). In Icicle, the “last” element in a stream is the last one
that appears in the table on disk. In Lustre, the “last” element in a stream is the one that was
most recently received.

If we took the unstreamable query from Section 3.2 and converted it to Lustre syntax,
then the resulting program would execute, but the �lter predicate would compare the last key
with the most recent key from the stream, which is the key itself. �e �lter predicate would
always be true, and the query would return the mean of the entire stream. Applying the Icicle
type system to our queries imposes the natural stage restriction associated with �nite streams,
so there are distinct “during” (element) and “a�er” (aggregate) stages.

3.2.3 Incremental update

Suppose we query a large table and record the result. Tomorrow morning, we receive more
data and add it to the table. We would like to update the result without needing to process
all data from the start of the table. We can perform this incremental update by remembering
the values of all intermediate aggregates that were computed in the query, and updating them
as new data arrives. In the streamable version of the meanOfLatest example from Section 3.2,
these aggregates are k and avgs.

We also provide impure contextual information to the query, such as the current date, by
assigning it an aggregate type. As element-wise computations cannot depend on aggregate
computations, we ensure that reused parts of an incremental computation are the same regard-
less of which day they are executed.

3.2.4 Bounded bu�er restriction

Icicle queries process tables of arbitrary size that may not �t in memory. As with other stream-
ing models, each query must execute without requiring bu�er space proportional to the size
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of the input. As a counterexample, here is a simple list function that cannot be executed in a
streaming manner without reserving a bu�er of the same size as the input:

unbounded :: [Int] → [(Int,Int)]

unbounded xs = zip (filter (> 0) xs) (filter (< 0) xs)

�is function takes an input list xs, and pairs the elements that are greater than zero with
those that are less than zero. If we try to convert this computation to a single-pass streaming
implementation, it requires an unbounded bu�er: if the input stream containsn positive values
followed by n negative values, then all positive values must be bu�ered until we reach the
negative ones, which allow output to be produced.

In Icicle, queries that would require unbounded bu�ering are statically outlawed by the
type system, with one major caveat that we will discuss in a moment. Because Icicle is based
on the push streams described in Section 2.3, the stream being processed (such as xs above)
is implicit in each query. Constructs such as filter and fold do not take the name of the
input stream as an argument, but instead operate on the stream de�ned in the context. Icicle
language constructs that de�ne Aggregate computations describe how elements from the stream
should be aggregated, but the order in which those elements are aggregated is implicit, rather
than being de�nable by the body of the query. In the expression (filter p of mean value),
the term (mean value) is applied to stream values which satisfy the predicate p, but the values
to consider are supplied by the context.

Similarly, Icicle language constructs that de�ne Element computations describe element-
wise transformations of the input stream. If, as in our stocks example, the input table is a record
containing �elds open and close, then open denotes an Element computation that, when applied
to an element in the input stream, extracts the element’s open �eld. Also in the stocks example,
the �lter predicate (open < close) denotes an Element computation that, when applied to an
input element, extracts both �elds from the input element and compares the two. Because
all Element computations over the same input table de�ne a transformation of the same input
stream element type, any two Element computations in a query can be combined together
without requiring any bu�ering. �is Element representation only works for length-preserving
stream transformers; it cannot represent �ltered streams, which is why we restrict �ltering to
only allow aggregation of the �ltered stream as described above.

Finally, our major caveat is that the group construct we used in Section 3.2 uses space
proportional to the number of distinct keys in the input stream. For our applications, the keys
are commonly company names, customer names, and days of the year. Our production system
knows that these types are bounded in size, and that maps from keys to values will �t easily
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T ::= Int | Bool | Map T T | (T × T )

M ::= T | Element T | Aggregate T

F ::= (M) → M

Table ::= table x { (x : T ; ) }

Exp, e ::= x | V | Prim Exp | x Exp
| let x = Exp in Exp
| fold x = Exp then Exp
| filter Exp of Exp
| group Exp of Exp

Prim, p ::= (+) | (-) | (*) | (/) | (==) | (/=) | (<) | (>) | (,)
| lookup | fst | snd

V , v ::= N | B | {V ⇒ V } | (V × V )

Def ::= function f (x : M) = Exp
| query x = Exp

Top ::= Table; Def ;

Figure 3.1: Icicle grammar

in memory. A�empting to group by values of a type with an unbounded number of members,
such as a Real or String, results in a compile-time warning.

3.2.5 Source language

�e grammar for Icicle is given in Figure 3.1. Value types (T ) include numbers, booleans and
maps; some types such as Real and String are omi�ed. Modal types (M) include the pure
value types, and modalities associated with a value type. Function types (F ) include functions
with any number of modal type arguments to a modal return type. As Icicle is a �rst-order
language, function types are not value types.

Table de�nitions (Table) de�ne a table name and the names and types of columns.
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Expressions (Exp) include variable names, constants, applications of primitives and func-
tions. �e fold construct de�nes the name of an accumulator, the expression for the initial
value, and the expression used to update the accumulator for each element of the stream. �e
filter construct de�nes a predicate and an expression to accumulate values for which the
predicate is true. �e group construct de�nes an expression used to determine the key for
each element of the stream, and an expression to accumulate the values that share a common
key.

Grammar Prim de�nes the primitive operators. Grammar V de�nes values. Grammar Def
contains both function and query de�nitions. Grammar Top is the top-level program, which
speci�es a table, the set of function bindings, and the set of queries. All queries in a top-level
program process the same input table.

3.2.6 Type system

�e typing rules for Icicle are given in Figure 3.2. �e judgment form (Γ ` e : M) associates
an expression e with its type M under context Γ. �e judgment form (p :P F ) associates a
primitive with its function type F . �e judgment form (F • M : M) is used to li� function
application to modal types: a function type F applied to a list of modal argument types M

produces a result type and matching mode M . �e judgment form (Γ ` Def a Γ) takes
an input environment Γ and function or query, and produces an environment containing the
function or query name and its type. Finally, the judgment form ( ` Top a Γ) takes a top-level
de�nition with a table, functions and queries, and produces a context containing the types of
all the de�nitions.

Rules (TcNat), (TcBool), (TcMap) and (TcPair) assign types to literal values. Rule (TcVar)
performs variable lookup in the context. Rule (TcBox) performs the promotion mentioned
earlier, allowing a pure expression to be implicitly treated as an Element or Aggregate type.

Rules (TcPrimApp) and (TcFunApp) produce the type of a primitive or function applied to
its arguments, using the auxiliary judgment forms for application. Rule (TcLet) is standard.

In rule (TcFold), the initial value has value type T . A binding for the fold accumulator is
added to the context of ek with type (Element T ), and the result of the overall fold has type
(Aggregate T ).

Rule (TcFilter) requires the �rst argument of a filter to have type (Element Bool), denoting
a stream of predicate �ags. �e second argument must have modality Aggregate, denoting a
fold to perform over the �ltered elements. �e result is also an Aggregate of the same type as
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Γ ` e : M

Γ ` N : Int
(TcNat)

Γ ` B : Bool
(TcBool)

{Γ ` vi : T } {Γ ` v ′i : T ′}

Γ ` {vi ⇒ v ′i } : Map T T ′
(TcMap)

Γ ` v : T Γ ` v ′ : T ′

Γ ` v × v ′ : T × T ′
(TcPair) (x : T ) ∈ Γ

Γ ` x : T
(TcVar)

Γ ` e : T m ∈ {Element, Aggregate}
Γ ` e : m T

(TcBox)

p :P F {Γ ` ei : Mi } F • {Mi } : M ′

Γ ` p {ei } : M ′
(TcPrimApp)

(x : F ) ∈ Γ {Γ ` ei : Mi } F • {Mi } : M ′

Γ ` x {ei } : M ′
(TcFunApp) Γ ` e : M Γ, x : M ` e ′ : M ′

Γ ` let x = e in e ′ : M ′
(TcLet)

Γ ` ez : T Γ, x : Element T ` ek : Element T
Γ ` fold x = ez then ek : Aggregate T

(TcFold)

Γ ` e : Element Bool Γ ` e ′ : Aggregate T
Γ ` filter e of e ′ : Aggregate T

(TcFilter)

Γ ` e : Element T Γ ` e ′ : Aggregate T ′

Γ ` group e of e ′ : Aggregate (Map T T ′)
(TcGroup)

p :P F

p ∈ {+, -, *, /}
p :P (Int, Int) → Int

(PrimArith) p ∈ {==, /=, <, >}
p :P (Int, Int) → Bool

(PrimRel)

(,) :P (T , T ′) → (T × T ′)
(PrimTuple)

lookup :P (Map T T ′, T ) → T ′
(PrimLookup)

fst :P (T × T ′) → T
(PrimFst)

snd :P (T × T ′) → T ′
(PrimSnd)

F • M : M

({Mi } → M ′) • {Mi } : M ′
(AppArgs)

({Ti } → T ′) • {m Ti } : m T ′
(AppRebox)

Γ ` Def a Γ

Γ ∪ {xi : Mi } ` e : M ′ F = {Mi } → M ′

Γ ` function x {xi : Mi } = e a Γ, x : F
(CheckFun)

Γ ` e : Aggregate T
Γ ` query x = e a Γ, x : Aggregate T

(Check�ery)

` Top a Γ

Γ0 = {xi : Element Ti } { Γj−1 ` dj a Γj }

` table x {xi : Ti }; { dj } a Γj
(CheckTop)

Figure 3.2: Types of expressions
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the fold. By restricting filter to only perform folds, we ban filter from returning a stream
of elements of a di�erent length, and side-step the issue of clock analysis. We discuss clock
types further in Section 3.5.

Rule (TcGroup) performs a similar nested aggregation to filter.
Rules (PrimArith), (PrimRel), (PrimTuple), (PrimLookup), (PrimFst) and (PrimSnd) assign

types to primitives.
Rule (AppArgs) produces the type of a function or primitive applied to its arguments. Rule

(AppRebox) is used when the arguments have modal type m — applying a pure function to
arguments of modem produces a result of the same mode.

Rule (CheckFun) builds the type of a user de�ned function, returning it as an element
of the output context. Rule (Check�ery) is similar, noting that all queries return values of
Aggregate type. Finally, rule (CheckTop) checks a whole top-level program.

3.2.7 Evaluation

We now give a denotational evaluation semantics for Icicle queries. For the evaluation se-
mantics, we introduce an auxiliary grammar for describing stream values and heaps. In the
source language, all streams are the same length and rate as the input stream, to ensure that
elements from di�erent streams can always be pairwise joined. To maintain this invariant,
size-changing operations such as filter perform folds rather than returning di�erently-sized
output streams. Introducing literal stream values and representing them as a list of values
would invalidate this invariant, because the length of the input stream is not statically known.
Instead, in the evaluation semantics, we represent Element stream values as meta-level stream
transformers, which transform the input element to an output element. Likewise, we represent
Aggregate values as meta-level folds. �e result of evaluating a query will also be a meta-level
fold, into which the values from the input stream are pushed. We introduce the de�nition of
stream values in the evaluation semantics only, which forces us to use a heap-based semantics
instead of a substitution-based semantics.

�e auxiliary grammar and evaluation rules for Icicle are given in Figure 3.3. Grammar N
de�nes the modes of evaluation, including pure computation. Grammar Σ de�nes a heap con-
taining stream values, where each assignment has an associated evaluation mode. Grammar
V ′ de�nes the stream values that can be produced by evaluation, depending on the mode:

• Pure computation results are a single value;
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• Element computation results are stream transformers, which are represented by meta-
functions that take a value of the input stream element and produce an output stream
element value; and

• Aggregate computation results consist of an initial state, an update meta-function to
be applied to each stream element and current state, and an eject meta-function to be
applied to the �nal state to produce the �nal result value.

In the grammar V ′, we write ( •→) to highlight that the objects in those positions are meta-
functions, rather than abstract syntax. To actually process data from the input table, we will
need to apply the produced meta-functions to the data.

�e judgment form (N | Σ ` e ⇓ V ′) de�nes a big-step evaluation relation: under
evaluation mode N with heap Σ, expression e evaluates to result V ′. �e evaluation mode
N controls whether pure values should be promoted to element (stream) or aggregate (fold)
results. We assume that all functions have been inlined into the expression before evaluation.

Rule (EVal) applies when the expression is a constant value. Rule (EVar) performs variable
lookup in the heap, and requires the evaluation mode to be the same as the mode of the variable.
Rule (ELet) evaluates the bound expression under the given mode, and inserts the binding into
the heap.

Rules (EBoxStream) and (EBoxFold) li� pure values to stream results and aggregate results
respectively. To li� a pure value to a stream result, we produce a meta-function that always
returns the value. To li� a pure value to an aggregate result, we set the update meta-function
to return a dummy value, and have the eject meta-function return the value of interest.

Rules (EPrimValue), (EPrimStream) and (EPrimFold) apply primitive operators to pure val-
ues, streams and aggregations respectively. In (EPrimValue), all the argument expressions are
bound in the sequence e using the sequence comprehension syntax {ei}. Each argument ex-
pression ei is evaluated to a corresponding pure value vi , to which the primitive operator is
then applied.

Rule (EPrimStream) is similar to (EPrimValue), except the result is a new stream trans-
former that applies the primitive to each of the elements gained from the input streams.

In (EPrimFold), each argument expression is evaluated to a fold. Each argument’s fold has
its own initial fold state (z), update function (k) and eject function (j). �e result fold’s ini-
tial state is the tuple of all arguments’ initial states (

∏
i zi ). �e result fold’s update function

applies each argument’s update functions to the input stream element (s) and the correspond-
ing accumulator state (vi ). �e result fold’s eject function performs all arguments’ ejects and
applies the primitive operator to the �nal result of all argument folds.
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N ::= Pure | Element | Aggregate Σ ::= · | Σ, x =N V ′

V ′ ::= Value V | Stream (V
•
→ V ) | Fold V (V

•
→ V

•
→ V ) (V

•
→ V )

N | Σ ` e ⇓ V ′

Pure | Σ ` V ⇓ Value V
(EVal) x =n V ′ ∈ Σ

n | Σ ` x ⇓ V ′
(EVar) n′ | Σ ` e ⇓ v n | Σ, x =n′ v ` e ′ ⇓ v ′

n | Σ ` let (x : n′ τ ′) = e in e ′ ⇓ v ′
(ELet)

Pure | Σ ` e ⇓ Value v

Element | Σ ` e ⇓ Stream (λs . v) (EBoxStream) Pure | Σ ` e ⇓ Value v

Aggregate | Σ ` e ⇓ Fold () (λs (). ()) (λ(). v) (EBoxFold)

{Pure | Σ ` ei ⇓ Value vi }

Pure | Σ ` p {ei } ⇓ Value (p {vi })
(EPrimValue) {Element | Σ ` ei ⇓ Stream vi }

Element | Σ ` p {ei } ⇓ Stream (λs . p {vi s})
(EPrimStream)

{Aggregate | Σ ` ei ⇓ Fold zi ki ji }

Aggregate | Σ ` p {ei } ⇓ Fold (
∏
i

zi ) (λs v .
∏
i

(ki s vi )) (λ(
∏
i

vi ). p {ji vi })
(EPrimFold)

Element | Σ ` e ⇓ Stream f Aggregate | Σ ` e ′ ⇓ Fold z k j

Aggregate | Σ ` filter e of e ′ ⇓ Fold z (λs v . if f s then k s v else v) j
(EFilter)

Element | Σ ` e ⇓ Stream f Aggregate | Σ ` e ′ ⇓ Fold z k j

Aggregate | Σ ` group e of e ′ ⇓ Fold {} k ′ j ′
(EGroup)

where k ′ =λs m. let key = f s
val | key ∈m =m[key]

| otherwise = z
in m[key⇒ k s val]

j ′ = λm. {key⇒ j m[key] | key ∈ m}

Pure | Σ ` z ⇓ Value z ′ Element | Σ′ ` k ⇓ Stream k ′

Aggregate | Σ ` fold x = z then k ⇓ Fold z ′ (λs v . k ′ (v , s)) (λv . v) (EFold)

where Σ′ =(x = Stream fst),
{xi = Stream (fi · snd) | xi = Stream fi ∈ Σ},
{xi = Fold zi (ki · snd) ji | xi = Fold zi ki ji ∈ Σ},
{xi = Value vi | xi = Value vi ∈ Σ}

{x ⇒ V } | e ⇓ V

Aggregate | {xi = Stream (fst · sndi ) | xi ⇒ vi ∈ t} ` e ⇓ Fold z k j

t | e ⇓ j (fold k z {v0 × · · · ×vi × () | xi ⇒ vi ∈ t})
(ETable)

Figure 3.3: Evaluation rules and auxiliary grammar
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Rule (EFilter) �rst evaluates the predicate e to a stream transformer f , and the body e′ to an
aggregation. �e result is a new aggregation where the update function applies the predicate
stream transformer f to the input element s to yield a boolean �ag which speci�es whether
the current aggregation state should be updated.

Rule (EGroup) is similar to (EFilter), except that the stream transformer f produces group
keys rather than boolean �ags, and we maintain a �nite mapm of aggregation states for each
key. In the result aggregation, the update function k′ updates the appropriate accumulator in
the map by �rst computing the key key using the stream transformer f . �e update function
then �nds the aggregation state corresponding to the key in the map, or defaults to the zero
aggregation state z if the key does not exist in the map. �e update function then updates the
map with the new aggregation state by applying the original update function k to the input
stream s and the current key’s aggregation state val. We use the syntax map[key ⇒ value]
to denote inserting or updating a map to associate a key with a value. �e eject function j′

applies the original eject function j to every accumulator value in the mapm, while preserving
the key.

Rule (EFold) introduces a new accumulator, which is visible in the context of the body k .
Evaluating the body k produces a body stream transformer k′, whose job is to update this
new accumulator each time it is applied. �is stream transformer takes as input a tuple con-
taining the current accumulator value and the input stream element, and returns the updated
accumulator value. We introduce a heap binding for the new accumulator, which extracts the
accumulator value from the �rst element of the input tuple. When the k′ stream transformer
uses any other stream transformer bindings from the heap, it will pass the tuple containing
the accumulator value and the stream element. �e existing stream transformer bindings from
the heap are only expecting to receive the stream element, so we modify the heap bindings
to extract the stream element before applying the transformer. In the conclusion of (EFold),
we return a fold result. �e fold’s update function passes the stream transformer a tuple (v , s),
where v is the accumulator value and s is the input element of the stream received from the
context of the overall fold expression.

�e judgment form (t | e ⇓ V ) evaluates an expression over a table input: on input table t ,
aggregate expression e evaluates to valueV . �e input table t is a map from column name to a
list of all the values for that column. Rule (ETable) creates an initial heap where each column
name xi is bound to an expression which projects out the appropriate element from a single
row in the input table. Evaluating the expression e produces an aggregation result where the



3.3 I N T E R M E D I AT E L A N G UA G E 53

PlanX ::= x | V | PlanP PlanX | λx . PlanX
PlanP ::= Prim | mapUpdate | mapEmpty | mapMap | mapZip
PlanF ::= fold x : T = PlanX then PlanX ;

| filter PlanX { PlanF }
| group PlanX { PlanF }

Plan ::= plan x { x : T ; }
before { x : T = PlanX ; }
folds { PlanF }
after { x : T = PlanX ; }
return { x : T = x ; }

Figure 3.4: �ery plan grammar

update function k accepts each row from the table and updates all the accumulators de�ned
by e . �e actual computation is driven by the fold meta-function.

3.3 I N T E R M E D I AT E L A N G UA G E

To execute Icicle queries over large datasets, we �rst convert the queries to an intermediate
language that is similar to a physical query plan for a database system. We convert each source
query to a query plan, then fuse together the plans for queries on the same table. Once we have
the fused query plan, we then perform standard optimisations such as common subexpression
elimination and partial evaluation.

�e grammar for the Icicle intermediate language is given in Figure 3.4. Expressions PlanX
include variables, values, applications of primitives and anonymous functions. Function def-
initions and uses are not needed in expressions here, as their de�nitions are inlined before
converting to query plans. Anonymous functions are only allowed as arguments to primi-
tives: they cannot be applied or bound to variables. �e primitives of the source language
are extended with key-value map primitives, which are used for implementing groups. Folds
are de�ned in PlanF and can be nested inside a �lter, in which case the accumulator of the
fold is only updated when the predicate is true; the nested fold binding is available outside of
the �lter. Folds nested inside a group are performed separately for each key; the nested fold
binds a key-value map instead of a single value. �e Plan itself is split into a �ve stage loop
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anatomy (Shivers, 2005). First we have the name of the table and the names and element types
of each column. �e before stage then de�nes pure values which do not depend on any table
data. �e folds stage de�nes element computations and how they are converted to aggregate
results. �e after stage de�nes aggregate computations that combine multiple aggregations
a�er the entire table has been processed. Finally, the return stage speci�es the output values
of the query; a single query will have only one output value, but the result of fusing many
queries can have many outputs. When there are no bindings in a particular stage, we omit
that stage completely.

Before we discuss an example query plan we �rst de�ne the count and sum functions used
in earlier sections. Both functions are de�ned as simple folds:

function count

= fold c = 0 then c + 1;

function sum (e : Element Int)

= fold s = 0 then s + e;

Inlining these functions into the three stocks queries from Section 3.1 yields the following
set of queries:

table stocks { open : Int, close : Int }

query

more = filter open > close of (fold more_c = 0 then more_c + 1);

less = filter open < close of (fold less_c = 0 then less_c + 1);

mean = filter open > close of

(fold mean_s = 0 then mean_s + open)

/ (fold mean_c = 0 then mean_c + 1);

We convert each query to a query plan separately. When we convert the more query, we
de�ne the count as a fold inside a �lter, and use the count binding in the return section to
de�ne the output of the query:

plan stocks { open : Int; close : Int; }

folds {

filter open > close {

fold c : Int = 0 then c + 1; } }

return { more : Int = c; }

�e less query follows the same structure as the more query, with a di�erent predicate:
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plan stocks { open : Int; close : Int; }

folds {

filter open < close {

fold c : Int = 0 then c + 1; } }

return { less : Int = c; }

To convert the mean query, the folds for the sum and the count are both de�ned inside the
same �lter. �e division is performed in the after section because it is an aggregate operation
on the �nal value of the two folds:

plan stocks { open : Int; close : Int; }

folds {

filter open > close {

fold c : Int = 0 then c + 1;

fold s : Int = 0 then s + open; } }

after { sc : Int = s / c; }

return { mean : Int = sc; }

To fuse the three query plans together, we freshen the names of each binding, then simply
concatenate the corresponding parts of the anatomy. �e single-pass restriction on queries
makes the fusion process so simple, because it ensures that there are no fusion-preventing
dependencies between any two query plans. We discuss fusion-preventing dependencies fur-
ther in Chapter 7. A�er concatenating the plans, we merge the �lter blocks for more and mean,
as both use the same predicate. When each query was expressed separately, we were free to
transform each individual query without a�ecting the others. Now the code that implements
each query is interspersed, but the stages are expressed separately, so we are free to rearrange
the bindings in each stage without a�ecting the other stages. �e result of fusing the three
query plans is shown in Listing 3.2.

With the fused query plan in Listing 3.2, we can now use common subexpression elimina-
tion to remove the duplicate count, mean_c, as its binding is alpha-equivalent to the binding
for more_c. In the a�er section, the reference to mean_c is replaced by more_c.

To demonstrate the relative di�culty of removing the duplicate work for the general case,
Listing 3.3 contains the push implementation of the same queries a�er inlining the de�nition
of the combinators. In this version, the more_c and mean_c references both hold the same value,
but this fact is only evident with non-local reasoning about the program. �e reference initial-
isations and updates are located in di�erent parts of the program, with potentially interfering
writes in-between. We could use a global value numbering (Gulwani and Necula, 2004) algo-
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plan stocks { open : Int; close : Int; }
folds {
filter open > close {

fold more_c : Int = 0 then more_c + 1;
fold mean_c : Int = 0 then mean_c + 1;
fold mean_s : Int = 0 then mean_s + open; }

filter open < close {
fold less_c : Int = 0 then less_c + 1; } }

after { mean_sc : Int = mean_s / mean_c }
return { more : Int = more_c;

less : Int = less_c;
mean : Int = mean_sc; }

Listing 3.2: �ery plan for all three stocks queries

queries :: IO (Push Record (Int,Int,Int))
queries = do
more_c ← newIORef 0
less_c ← newIORef 0
mean_s ← newIORef 0
mean_c ← newIORef 0

let push record = do
when (open record > close record) $ do
modifyIORef more_c (+1)

when (open record < close record) $ do
modifyIORef less_c (+1)

when (open record > close record) $ do
modifyIORef mean_s (+ open record)
modifyIORef mean_c (+1)

let done = do
more_c' ← readIORef more_c
less_c' ← readIORef less_c
mean_s' ← readIORef mean_s
mean_c' ← readIORef mean_c
return (more_c', less_c', div mean_s' mean_c')

return (Push push done)

Listing 3.3: Push implementation of queries a�er inlining combinators
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table kvs { key : Date; value : Int }

query meanOfLatest
= let k = last key in

let avgs = group key of mean value in
lookup k avgs

Listing 3.4: Icicle implementation of meanOfLatest (repeated)

rithm to remove the duplicate work from the push implementation; such algorithms generally
require polynomial time in the size of the program. For the benchmarks in Section 3.4 we have
twelve queries to fuse together, while some of our production workloads have thousands of
queries over the same input. A polynomial time algorithm is unlikely to be practical for such
workloads. With the intermediate representation of Icicle we can use a common subexpression
elimination algorithm (Chitil, 1997a), which requires O(n logn) time.

3.3.1 A more complicated example

�e previous queries were relatively simple to translate to the intermediate language, but the
meanOfLatest query from Section 3.2 is a bit more involved. �e meanOfLatest query is shown
again in Listing 3.4.

To convert meanOfLatest to a query plan, we must �rst de�ne the mean and last functions
used in the query. �e mean function takes a stream of integers and returns the sum of the
elements divided by the count:

function mean (e : Element Int)

= sum e / count;

�e last function uses a fold that initialises the accumulator to the empty date value
NO_DATE2, then, for each element, updates it with the date gained from the current element
in the stream:

function last (d : Element Date)

= fold l = NO_DATE then d;

2 In our production compiler, last returns a Maybe.
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Inlining these two functions into the meanOfLatest query yields the following:

query meanOfLatest

= let lst = (fold l = NO_DATE then key) in

let avgs = group key of

( (fold s = 0 then s + value)

/ (fold c = 0 then c + 1) ) in

let ret = lookup lst avgs

ret

To convert this source query to a plan in the intermediate language, we convert each of
the let-bindings separately then concatenate the corresponding parts of the loop anatomy. �e
lst binding becomes a single fold, initialised to NO_DATE and updated with the current key:

plan kvs { key : Date; value : Int; }

folds { fold fL : Date = NO_DATE then key }

after { lst : Date = fL }

For the avgs binding, each fold accumulator inside the body of the group construct is nested
within a group in the intermediate language. Inside the context of the group, the binding for s
refers to the Int value for the current key; outside the group, in the after section, s refers to a
value of (Map Date Int) containing the values of all keys. Each time we receive a row from the
table the accumulator associated with the key is updated, using the default value 0 if an entry
for that key is not yet present. A�er we have processed the entire table we join the maps and
divide each sum by its corresponding count to yield a map of means for each key.

folds { group key

{ fold s : Int = 0 then s + value

; fold c : Int = 0 then c + 1 } }

after { avgs : Map Date Int

= mapMap (λsc. fst sc / snd sc) (mapZip s c) }

Finally, the ret binding from the original query is evaluated in the after stage. In the
return stage we specify that the result of the overall query avg is the result of the ret binding.

after { ret : Int = lookup lst avgs }

return { avg : Int = ret }

We then combine the plans from each binding. �is query plan is then fused with any other
queries that process the same input; the fused query plan is then translated to an imperative
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loop nest in a similar way to our prior work on �ow fusion (Lippmeier et al., 2013). When
translating folds nested inside filters, the update statements are nested inside if statements.
When translating folds nested inside groups, each accumulator becomes a key-value map, and
the update statements modify the element corresponding to the current key. As with filters,
groups with the same key can be merged together. We implement key-value maps as two sepa-
rate arrays: one array contains the keys, and the other contains the corresponding values. �e
nested structure of groups allows us to re-use the same keys array for multiple accumulators,
further reducing duplicate work.

3.4 B E N C H M A R K S

�is section shows the results of benchmarks carried out in 2016. At Ambiata we are using
Icicle in production to query medium-sized datasets that �t on a single disk. For larger datasets,
we have implemented a scheduler to distribute datasets across multiple nodes and run Icicle
on each node separately. �e data we are working with is several terabytes compressed which,
at the time of benchmarking, would not �t on a single disk. However, each row has a natural
primary key and the features we need to compute depend only on the data within single key
groups, which makes the workload very easy to distribute.

In our proof of concept testing we replaced an existing R script that performed feature
generation with new Icicle code. �e R script computed features from a 317GB dataset supplied
by a customer, containing records for roughly a million di�erent end-users. For each end-user,
the R script computed 12 queries over each of 31 input tables, for 372 query evaluations in
total. As our use-case and customer data are con�dential, we cannot give the exact queries;
most queries perform a group or �lter operation, followed by a statistical function such as
minimum, maximum, count, variance, or standard deviation. �e R script took 15 hours to
run and consisted of 3,566 lines of code. �e replacement Icicle version is only 191 lines of
code and takes seven minutes to run.

�e graph in Figure 3.5 shows the throughput in megabytes per second. We compared the
throughput of several programs over the same dataset:

• our original R implementation (R);

• Icicle running single-threaded (1 CPU);

• Icicle running on multiple processors (32 CPU);
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Figure 3.5: �roughput comparisons of Icicle (1 CPU and 32 CPU) against existing R code and
standard Unix utilities; higher is faster.

• �nding empty lines with grep "ˆ$" over the same data;

• counting characters, words and lines with wc;

• reading and throwing away the results with cat > /dev/null.

We ran all the Unix utilities with unicode decoding disabled using LANG=C LC_COLLATE

for maximum performance. �e input data does not contain unicode characters. We used an
Amazon EC2 c3.8xlarge with 32 CPUs, 60GB of RAM, and striped, RAIDed SSD storage. �e
fused Icicle version signi�cantly outperformed the R version of the queries, and the single-
threaded version was on par with wc, while only a li�le slower than grep. �is is despite the
fact that the Icicle queries perform more computational work than wc and grep. By using
multiple processors, we were able to scale up to perform as well as cat, approaching the disk
speed. �e memory usage of Icicle starts at around 200MB of RAM for a single thread, but as
more threads are added approaches 15MB per thread. �e memory usage is constant in the
input size and depends on the number of queries. �e R code is single threaded and would
require at least 150 processors to reach similar speeds, assuming perfect scaling.

Figure 3.6 shows how the total read throughput scales as the number of fused queries is
increased. For each number of queries, we ran two versions of the fused result: one version that
wrote the output to disk, and the other that piped the result to /dev/null. �e graph shows
the throughput of the disk version decreasing roughly linearly in the number of queries, while
the version ignoring the output remains constant. �is suggests that we are IO bound on the
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Figure 3.6: Decrease in read throughput as queries are added, comparing writing the output
to disk and writing to /dev/null.

write side, as we write the query results for each of the million end-users. �e time spent
evaluating the queries themselves is small relative to our current IO load.

To achieve these benchmark results, we perform several low-level optimisations on the
fused imperative code, in addition to the high-level fusion and common subexpression elimi-
nation optimisations already discussed. One of the most important optimisations is generating
specialised parsing and output code. Many of our data sets are stored as text �les containing
JSON values. �e format for these JSON values is dictated by the type of each query’s input ta-
ble. For each fused set of queries, we generate C code that parses the input table, computes the
result of the query, and writes the result to an output �le. �e generated parsing and output
code is speci�c to the input and output types, as opposed to generic JSON parsing code that
must dynamically allocate records with statically unknown �elds. In the generated code, we
also use data-only �a�ening (Bergstrom et al., 2013) as an e�cient representation of structures
such as arrays of sum types and tuples.

3.5 R E L AT E D W O R K

In Icicle, as in the push streams from Section 2.3, there is only one input stream, sourced
from the input table, which is implicit in the bodies of queries. �is approach is intention-
ally simpler than existing synchronous data �ow languages such as Lucy-n (Mandel et al.,
2010) and fusion techniques using synchronous data �ow such as �ow fusion (Lippmeier et al.,
2013). Synchronous data �ow languages implement Kahn networks (Vrba et al., 2009) that are
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type table = { open_price : int; close_price : int }

let node more input =
let clock gt = (input.open_price > input.close_price)
in let c = count (() when gt)
in hold 0 gt c

let node less input =
let clock lt = (input.open_price < input.close_price)
in let c = count (() when lt)
in hold 0 lt c

let node mean input =
let clock gt = (input.open_price > input.close_price)
in let s = sum (input.open_price when gt)
in let c = count (() when gt)
in let m = div s c
in hold 0 gt m

Listing 3.5: Lucid-Synchrone implementation of stocks queries

restricted to use bounded bu�ering (Johnston et al., 2004) by clock typing and causal analy-
sis (Stephens, 1997). In such languages, stream combinators with multiple inputs, such as zip,
are assigned types that require their stream arguments to have the same clock — meaning that
elements always arrive in lock-step and the combinators themselves do not need to perform
their own bu�ering. In Icicle the fact that the input stream is implicit and distributed to all
combinators means that we can forgo clock analysis. All queries in a program execute in lock-
step on the same element at the same moment, which ensures that fusion is a simple ma�er
of concatenating the components of the loop anatomy of each query.

In synchronous languages such as Lucid Synchrone (Caspi and Pouzet, 1995), clocks are
represented as a stream of booleans, and generated code o�en performs repeated runtime
checks on the same clock value. In comparison, the restricted form of streaming in Icicle
allows us to generate straightforward loops with no repeated runtime clock checks. To illus-
trate these clock checks, Listing 3.5 shows the three stocks example queries implemented in
Lucid Synchrone. �e more query counts the number of elements where the open price is
greater than the close price by de�ning a new clock gt. �e syntax let node more speci�es
that more is a stream function. �e c binding counts the number of elements that satisfy the
predicate by restricting the unit argument of the count function to the clock gt, using the syn-
tax (() when gt). As the argument to count is restricted to the clock gt, the count will only
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increment when the clock is true. If we had instead restricted the result of count using the
syntax ((count ()) when gt), the count would be incremented for each input element, but
the result would only be sampled when the predicate was true. �e binding c only contains a
value when its clock gt is true; the hold function returns a stream that is always de�ned, by
sampling the most recent value of c, or using the default value 0 if no previous value of c is
available. �is operation is sometimes known as sample and hold.

�e above implementation of the mean query performs the division on every iteration. In
the Icicle query plan from Listing 3.2, this division was performed in the after stage, and so
was only performed at the end of the input stream. For folds, this after stage corresponds to
an eject function. For more complex queries, performing the eject function on every iteration
could be a signi�cant amount of work. We can modify the mean query to take an eject clock
that dictates when to perform the division as follows:

let node mean input eject =

let clock gt = (input.popen > input.pclose)

in let s = sum (input.popen when gt)

in let c = count (() when gt)

in let s' = hold 0 gt s

in let c' = hold 0 gt c

in let m = div (s' when eject) (c' when eject)

in m

For each stream function, the Lucid Synchrone compiler generates an OCaml function that
can be called on every clock cycle. Each generated function takes arguments denoting the
current element of each input stream, and a boolean for each clock that describes whether the
clock is enabled for the current cycle. Each generated function also takes a reference to a heap
object, in which the function stores the current state of accumulator values, and a boolean
describing whether to reset the accumulator state. �e sum function has as its accumulator
state a boolean denoting whether it has been initialised, and the current running sum. �e
mean function has as its accumulator state four references to the states of each called stream
function: sum, count, and the two calls to hold. �e div function is not a stream function, and
thus does not require accumulator state. At every iteration, each stream function must load its
state from memory, check whether to reset the state, and check whether the clocks are active,
before it can perform the computation. �e Lucid Synchrone compiler also does not perform
common subexpression elimination; subexpressions in Lucid Synchrone can perform e�ects,
and removing them may change the semantics of the program.
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In comparison, Icicle performs whole program optimisation on the set of queries to produce
a single query plan. �e resulting query plan can be converted into a single loop with local
variables as accumulators, and without needing to check clock or reset booleans on each iter-
ation. As all stream operations are either length-preserving maps or aggregations, all streams
have the same clock as the input stream, and we do not need runtime clock checks.

Shortcut fusion techniques such as foldr/build (Gill et al., 1993) and stream fusion (Cou�s
et al., 2007) rely on inlining to expose fusion opportunities. In Haskell compilers such as GHC,
the decision of when to inline is made by internal compiler heuristics, which makes it di�cult
for the programmer to predict when fusion will occur. When shortcut fusion cannot fuse a
program, it fails silently, leaving the programmer unaware of the failure. In this environment,
array fusion is considered a “bonus” optimisation rather than integral part of the compilation
method. In contrast, for our feature generation application we really must ensure that multiple
queries over the same table are fused, so we cannot rely on heuristics.

StreamIt (�ies et al., 2002) is an imperative streaming language which has been extended
with dynamic scheduling (Soulé et al., 2013). Dynamic scheduling handles data �ow graphs
where the transfer rate between di�erent stream operators is not known at compile time. Dy-
namic scheduling is a trade-o�: it is required for stream operators such as grouping and �l-
tering where the output data rate is not known statically, but using dynamic techniques for
graphs with static transfer rates tends to have a performance cost. Icicle includes grouping
and �ltering operators where the output rates are statically unknown, however the associated
language constructs require grouped and �ltered data to be aggregated rather than passed as
the input to another stream operator. �is allows Icicle to retain fully static scheduling, so the
compiled queries consist of straight line code with no bu�ering.

Icicle is closely related to work in continuous and shared queries. A continuous query is
one that processes input data which may have new records added or removed from it at any
time. �e result of the continuous query must be updated as soon as the input data changes.
Shared queries are ones in which the same sub expressions occur in several individual queries
over the same data, and we wish to share the results of these sub expressions among all indi-
viduals that use them. For example, in Munagala et al. (2007), input records are �ltered by a
conjunction of predicates, and the predicates occur in multiple queries. Madden et al. (2002)
uses a predicate index to avoid recomputing them. Andrade et al. (2003) describes a compiler
for queries over geospacial imagery that shares the results of several pre-de�ned aggregation
functions between queries. Continuous �ery Language (CQL) (Arasu et al., 2002; Group
et al., 2003) again allows aggregates in its queries, but they must be builtin aggregate func-
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tions. Icicle addresses a computationally similar problem, except that our input data sets can
only have new records added rather than deleted, which allows us to support general aggre-
gations rather than just �lter predicates. It is not obvious how arbitrary aggregate functions
could be supported while also allowing deletion of records from the input data — other than
by recomputing the entire aggregation a�er each deletion.
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C H A P T E R 4

P R O C E S S E S A N D N E T W O R K S

�is chapter presents a language for expressing a collection of queries, each with potentially
many input streams, as a Kahn process network. �is work was �rst published as Robinson
and Lippmeier (2017). �e processes in these process networks execute concurrently and com-
municate via �xed-size bounded bu�ers between channels. Each bu�er is restricted to contain
at most a single element. �e processes in a process network are then fused together to form
a single process which produces the same output streams as the entire network, without the
need for inter-process communication.

�e contributions of this chapter are:

• We informally introduce processes and fusion with example queries (Section 4.1);

• We present a streaming process calculus with concurrent execution semantics (Section 4.2);

• We present an algorithm for fusing pairs of processes (Section 4.3);

• We motivate an extra synchronisation primitive, drop, which coordinates between mul-
tiple consumers of the same stream, to improve locality by ensuring both consumers
operate on the same value concurrently (Section 4.4);

• We present a heuristic algorithm for fusing an entire process network (Section 4.5);

• We present an overview of the mechanised soundness proofs of fusion (Section 4.6).

4.1 G O L D PA N N I N G W I T H P R O C E S S E S

Recall the priceAnalyses example from Section 2.1, which performs statistical analyses over
the daily prices of a particular corporate stock and market index. Figure 4.1 shows the depen-
dency graph for priceAnalyses with the two input streams, index and stock, at the top of the
graph.
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priceOverMarketpriceOverTime

stock

map

regression

timeprices

join

joined

index

correlation

map

regression

prices

correlation

Figure 4.1: Dependency graph for priceAnalyses example

As discussed earlier, we cannot execute this example in a single pass using the pull streams
from Section 2.2, because the stock input stream is used twice, and pull streams only support
a single consumer. Similarly, we cannot execute this example in a single pass using the push
streams from Section 2.3, because the join combinator has two inputs, and push streams only
support a single producer except for non-deterministic merge. Rather than just using pull
streams, or just using push streams, we wish to be able to perform both pulling and pushing
in the same computation, in a way that supports multiple consumers and multiple producers.
Kahn process networks (Kahn and Mac�een, 1977) are a �exible, expressive way of writing
streaming computations, where a network is composed of communicating processes. Execut-
ing communicating processes introduces runtime overhead, as stream elements must be passed
between processes. Instead, we wish to take this concurrent process network and convert it
to sequential code that does not need any runtime scheduling or message passing overhead.

A process in our system is a simple imperative program with a local heap. A process pulls
source values from an arbitrary number of input streams and pushes result values to at least
one output stream. �e process language is an intermediate representation we use when fusing
the overall data�ow network. When describing the fusion transform we describe the control
�ow of the process as a state machine.

A combinator is a template for a process which parameterises it over the particular input
and output streams, as well as values of con�guration parameters such as the worker function
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foldl
= λ (k : b → a → b) (z : b) (j : b → c)

(sIn: Stream a) (sOut: Stream c).
ν (s : b) (v : a) (F0..F4: Label).
process
{ ins: { sIn }
, outs: { sOut }
, heap: { s = z, v }
, label: F0
, instrs: { F0 = pull sIn v F1[] else F2[]

, F1 = drop sIn F0[s = k s v]

−− sIn closed
, F2 = push sOut (j s) F3[]
, F3 = close sOut F4[]
, F4 = exit } }

Listing 4.1: Process implementation of foldl

used in a map process. Each process implements a logical operator — so we use “operator” when
describing the values being computed, but “process” when referring to the implementation.

4.1.1 Fold combinator

�e de�nition of the foldl combinator, used to implement correlation and regression in
our priceAnalyses process network, is given in Listing 4.1. �e combinator is parameterised
by the fold state update function (k) and the fold state initialisation (z). In correlation and
regression, the result must be extracted from the fold state; we extend the standard presen-
tation of foldl with an eject function (j) to perform this extraction. �e process reads from
an input stream and, at the end of the input stream, produces a single-element output stream
containing the fold result. �e nu-binders (ν (s : a) (v : b) . . .) indicate that each time
the foldl combinator is instantiated, fresh names must be given to s, v and so on, that do not
con�ict with other insantiations. �e s and v bindings refer to variables in the mutable heap of
the process. �e s variable stores the current fold state and is initialised to the initial fold value
(z); the v variable stores the most recent value from the input stream, and is le� uninitialised.

�e body of the combinator is a record that de�nes the process. �e ins �eld de�nes the
set of input streams, and the outs �eld de�nes the set of output streams. �e heap �eld gives
the initial values of each of the local variables; variables without an explicit initial value are
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given some arbitrary value. �e instrs �eld contains a set of labelled instructions that de�ne
the program, while the label �eld gives the label of the initial instruction. In this form, the
output stream (sOut) is de�ned via a parameter, rather than being the result of the combinator.

�e initial instruction (pull sIn v F1[] else F2[]) pulls the next element from the stream
sIn, writes it into the heap variable v, then proceeds to the instruction at label F1. �e empty
list [] a�er the target label F1 can be used to update heap variables, but as we do not need
to update anything yet we leave it empty. If the input stream is �nished, there are no more
elements to pull; execution proceeds to the instruction at label F2 instead.

A�er successfully pulling a new element from the input stream, the instruction at label F1
(drop sIn F0[s = k s v]) signals that the current element that was pulled from stream sIn

is no longer required, before updating the fold state (s) by applying the fold update function
(k). Execution then proceeds back to the pull instruction at label F0. In Section 4.4 we shall
see how this drop instruction is used to synchronise processes reading from the same shared
stream, ensuring that all processes operate on the same element together without overtaking
one another.

When the input stream is �nished, the instruction (push sOut (j s) F3[]) pushes the re-
sult of the eject function applied to the �nal fold state to the output stream sOut. Execution
then proceeds to the instruction at label F3. �e comment above the instruction highlights the
change in state of the input stream.

Next, the instruction (close sOut F4[]) signals that the output stream sOut is �nished, and
then proceeds to the instruction at label F4.

Finally, the instruction (exit) signals that the process is �nished, and has no further work
to do. �e process terminates.

4.1.2 Map combinator

�e de�nition of the map combinator, which applies a worker function to every element
in the input stream, is given in Listing 4.2. �e combinator is parameterised by the worker
function (f), and takes one input stream (sIn) and produces one output stream (sOut). �e
heap variable (v) is used to store the last value read from the input stream. �e process starts
by pulling from the input stream, storing the element in the heap variable (v). It then pushes the
transformed element (f v) into the output stream, drops the element from the input stream,
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map
= λ (f : a → b)

(sIn: Stream a) (sOut: Stream b).
ν (v : a) (M0..M4: Label).
process
{ ins: { sIn }
, outs: { sOut }
, heap: { v }
, label: M0
, instrs: { M0 = pull sIn v M1[] else M3[]

, M1 = push sOut (f v) M2[]
, M2 = drop sIn M0[]

−− sIn closed
, M3 = close sOut M4[]
, M4 = exit } }

Listing 4.2: Process implementation of map

and pulls again. When the input stream �nishes, the process closes the output stream and
terminates.

4.1.3 A network of processes

�e map and foldl combinators are su�cient to express the priceOverTime example, which
takes a single input stream and computes the correlation and regression. Here is the list im-
plementation of priceOverTime again:

priceOverTime :: [Record] → (Line, Double)

priceOverTime stock =

let timeprices = map (λr → (daysSinceEpoch (time r), price r)) stock

in (regression timeprices, correlation timeprices)

We can express priceOverTime as a process network by instantiating the above process
templates and connecting them together. A process network is a set of processes that are able
to communicate with each other.

Listing 4.3 shows the process network for priceOverTime. As with the process templates,
the network is parameterised by the output streams, which are in this case the output of
regression and correlation. We use the nu-binder syntax to instantiate a fresh name for
the timeprices internal stream, which is the output of the map combinator. We implement
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priceOverTime =
λ (stock : Stream Record)

(reg_out : Stream Line) (cor_out : Stream Double).
ν (timeprices : Stream (Double,Double)).

{ map tp_f stock timeprices
, foldl reg_k reg_z reg_j timeprices reg_out
, foldl cor_k cor_z cor_j timeprices cor_out }

Listing 4.3: Process network for priceOverTime

regression and correlation as folds with eject functions. �e details of the worker functions
given to map and foldl are de�ned externally.

In Chapter 3, Icicle used the details of worker functions to perform common subexpression
elimination a�er fusing queries together. We could remove duplicate work from a process a�er
performing fusion if we inlined the de�nitions of the worker functions into the process. �e
processes here are more general than Icicle’s intermediate language, as is necessary to support
both multiple inputs and multiple queries; removing all duplicate work from processes may re-
quire a polynomial-time global value numbering algorithm (Gulwani and Necula, 2004) rather
than the O(n logn) common subexpression elimination algorithm. �e fusion algorithm itself
does not require the details of the worker functions, however, and we leave them externally
de�ned for the present discussion.

4.1.4 Fusing processes together

Our fusion algorithm takes two processes and produces a new one that computes the output
of both. We fuse a pair of processes in the priceOverTime network; to distinguish between
the two foldl processes in this network, we refer to them as the regression and correlation

processes. As an example, we fuse the map process with the regression process. �e result
process computes the result of both processes as if they were executed concurrently, where
the output stream of the map process is used as the input stream of the regression process.

Figure 4.2 shows the result of instantiating the map process in the priceOverTime process
network. �e combinator parameters have the corresponding argument value substituted in,
and the variables and labels are given fresh names as necessary. We rename the variable name
v to tp_v, to avoid con�ict with variables named v in other processes. �e �gure also shows
the control �ow graph of the process. Figure 4.3 likewise shows the result of instantiating
the regression process. �e instructions and edges in each control �ow graph are coloured
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process −−map tp f stock timeprices
{ ins: { stock }
, outs: { timeprices }
, heap: { tp_v }
, label: M0
, instrs: { M0 = pull stock tp_v M1[] else M3[]

, M1 = push timeprices (tp_f tp_v) M2[]
, M2 = drop stock M0[]

−− stock closed
, M3 = close timeprices M4[]
, M4 = exit } }

exit (M4)

push timeprices (tp f tp v) (M1)

pull stock tp v (M0)

close timeprices (M3)

drop stock (M2)

have stock closed stock

Figure 4.2: Instantiated process for map with control �ow graph
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process −− foldl reg k reg z reg j timeprices reg out
{ ins: { timeprices }
, outs: { reg_out }
, heap: { reg_s = reg_z, reg_v }
, label: F0
, instrs: { F0 = pull timeprices reg_v F1[] else F2[]

, F1 = drop timeprices F0[reg_s = reg_k reg_s reg_v]

−− timeprices closed
, F2 = push reg_out (reg_j reg_s) F3[]
, F3 = close reg_out F4[]
, F4 = exit } }

pull timeprices reg v (F0)

drop timeprices [reg s = reg k reg s reg v] (F1) push reg out (reg j reg s) (F2)

close reg out (F3)

exit (F4)

have timeprices closed timeprices

Figure 4.3: Instantiated process for fold (regression) with control �ow graph
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… (M1)

pull stock tp v (M0)

… (M3)

closed stockhave stock

pull timeprices reg v (F0)

… (F1) … (F2)

have timeprices closed timeprices

… ((M1,{}),(F0,{timeprices=none})) … ((M3,{}),(F0,{timeprices=none}))

pull stock tp v ((M0,{}),(F0,{timeprices=none}))

closed stockhave stock

Figure 4.4: Fusing pull instructions for an unshared stream; the le� process can pull from the
unshared stream, while the right process must wait for the �rst process to produce a value

di�erently; the same colours will be used to highlight the provenance of each instruction in
our informal description of the fusion algorithm.

Fusing Pulls

�e algorithm proceeds by considering pairs of labels and instructions: one from each of the
source processes to be fused. First, we consider the initial labels of each process and their
corresponding instructions. �is situation is shown in Figure 4.4; instructions from the two
source processes are shown side-by-side and the instruction of the fused process is below.
�e map process pulls from the stock stream, while the regression process pulls from the
timeprices stream. As the timeprices stream is produced by the map process, the regression

process must wait until the map process pushes a value. If we were to execute the two processes
concurrently at this stage, only the map process could make progress, by pulling from the stock

input stream. �e corresponding instruction for the fused process pulls from the stock input
stream, allowing the map process to execute while the regression process waits.

Each of the joint result labels represents a combination of two source labels, one from each
of the source processes. For example, the �rst joint label ((M0,{}),(F0,{timeprices=none}))
represents a combination of the map process being in its initial state M0 and the regression
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process being in its own initial state F0. We also associate each of the joint labels with the
input state: a description of whether the regression process has a value available to read from
the shared timeprices stream. �ere is no value available, so the input state for timeprices

is set to none. �is extra information only applies to shared input streams; as such, the input
state of the map process is the empty map.

Fusing Push with Pull

Next, Figure 4.5 shows the map process pushing into the timeprices stream a�er pulling a value
from the stock stream, while the regression process is still trying to pull from the timeprices

stream. A�er the map process pushes a value, this value becomes available for the regression

process. In the fused process, this situation results in two steps. First, the map process pushes
the value (tp_f tp_v), and stores this value in the new local variable (chan_tp), so it is available
for the regression process. �e input state for the regression process is updated to (pending),
to signal that there is a value ready to be pulled in the (chan_tp) variable. Next, the regression

process reads the pending value, copying from the (chan_tp) variable into the (reg_v) variable.
�e input state for the regression process is updated to (have), to signal that the regression

process has copied the pulled value and is using it.

In the original process network, before any fusion, the timeprices stream has two con-
sumers: the regression and correlation processes. Since the fused process implements both
map and regression processes, the fused process still pushes to the timeprices stream to allow
the correlation process to consume it.

Fusion result

Listing 4.4 shows the �nal result of fusing the map and regression processes together. �ere
are similar rules for handling the other combinations of instructions, but we defer the de-
tails to Section 4.3. �e result process has one input stream, stock, and two output streams:
timeprices from map, and reg_out from regression.

To complete the implementation of priceOverTime, we would now fuse this result process
with the correlation process. Note that although the result process has a single shared heap,
the heap bindings from each fused process are guaranteed not to interfere, as when we instan-
tiate combinators to create source processes we introduce fresh names.
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push timeprices (tp f tp v) (M1)

… (M2)

pull timeprices reg v (F0)

… (F1) … (F2)

have timeprices closed timeprices

push timeprices (tp f tp v)[chan tp=tp f tp v] ((M1,{}),(F0,{timeprices=none}))

… ((M2,{}),(F1,{timeprices=have}))

jump [reg v=chan tp] ((M2,{}),(F0,{timeprices=pending}))

Figure 4.5: Fusing push with pull; the le� process produces a value, which the right process
consumes
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process −− map tp f stock timeprices / foldl reg k reg z reg j timeprices reg out
{ ins: { stock }
, outs: { timeprices

, reg_out }
, heap: { tp_v

, reg_s = reg_z, reg_v
, chan_tp }

, label: M0_F0
, instrs:
{ M0_F0 = pull stock tp_v M1_F0[] else M3_F0[]
−− ((M0,{}),(F0,{timeprices=none})); (LocalPull)
, M1_F0 = push timeprices (tp_f tp_v) M2_F0_p[chan_tp = (tp_f tp_v)]
−− ((M1,{}),(F0,{timeprices=none})); (SharedPush)
, M2_F0_p = jump M2_F1_h[reg_v = chan_tp]
−− ((M2,{}),(F0,{timeprices=pending})); (SharedPullPending)
, M2_F1_h = drop stock M0_F1_h[]
−− ((M2,{}),(F1,{timeprices=have})); (LocalDrop)
, M0_F1_h = jump M0_F0[reg_s = reg_k reg_s reg_v]
−− ((M0,{}),(F1,{timeprices=have})); (ConnectedDrop)

−− stock closed
, M3_F0 = close timeprices M4_F0_c[]
−− ((M3,{}),(F0,{timeprices=none})); (SharedClose)
, M4_F0_c = jump M4_F2_c[]
−− ((M4,{}),(F0,{timeprices=closed})); (SharedPullClosed)
, M4_F2_c = push reg_out (reg_j reg_s) M4_F3_c
−− ((M4,{}),(F2,{timeprices=closed})); (LocalPush)
, M4_F3_c = close reg_out M4_F4_c[]
−− ((M4,{}),(F3,{timeprices=closed})); (LocalClose)
, M4_F4_c = exit
−− ((M4,{}),(F4,{timeprices=closed})); (LocalExit)
} }

Listing 4.4: Fusion of timeprices and regression , along with shared instructions and vari-
ables
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4.1.5 Join combinator

To implement the whole priceAnalyses process network, we also need the join combinator,
which pairs together the elements of two sorted input streams. �e combinator is parame-
terised by the key comparison function, which returns an Ordering describing whether the
key of the �rst argument is equal to the key of the second argument (EQ), lesser (LT), or greater
(GT). �e process, shown in Listing 4.5, reads from two input streams (sA and sB), and produces
one output stream (sOut). Two heap variables are used to store the most recent input elements
(va and vb), and another is used to store the key comparison (c).

In the �rst group of instructions, the instructions at labels IN0 and IN1 pull an element
from each input stream. If both pulls are successful, the instruction at label IN2 compares the
input values using the key comparison function (cmp va vb). Next, the instruction at label IN3
checks whether the keys are equal: if so, execution proceeds to the instruction at label EQ0;
otherwise, instruction proceeds to the instruction at label NE0.

�e group of instructions at label EQ0 execute when the element keys are equal, and pushes
the pair of elements to the output stream, before dropping both input streams. Execution then
proceeds back to the instruction at label IN0 to pull from the inputs.

�e instruction at label NE0 executes when the element keys are not equal, and proceeds to
the instruction at label LT0 if the �rst element is lesser, or to the instruction at label GT0 if the
�rst element is greater. �ese two groups of instructions drop the input stream with the lesser
key and pull a new value from the same input stream, before returning back to the instruction
at label IN2 to compare the elements.

�e group of instructions at label DA0 executes when the sB input stream is �nished, while
the sA input stream may still have elements. As with the polarised stream implementation of
join_iii in Section 2.4, we must drain the le�over elements from the un�nished stream by
repeatedly pulling and dropping until there are no more elements. �is draining is required
because, when fusing processes together, we treat each consumer as having a one-element
bu�er for each input stream; the producer can only push when all consumers’ bu�ers are
empty. Without draining, the producer would be blocked inde�nitely on the terminated join

process, and any other consumers of the stream would be unable to receive input values.
As an alternative to draining, we could extend the process network semantics to include a

“disconnect” instruction, which indicates that a process is no longer interested in consuming
a particular input stream. Here, we use the simpler process semantics without disconnection,
at the expense of having to explicitly drain streams. It may be tempting to instead modify the
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join
= λ (cmp : a → b → Ordering)

(sA : Stream a) (sB : Stream b)
(sOut: Stream (a,b)).

ν (va : a) (vb : b) (c : Ordering) (...: Label).
process
{ ins: { sA, sB }
, outs: { sOut }
, heap: { va, vb, c }
, label: IN0
, instrs: { IN0 = pull sA va IN1[] else DB0[]

, IN1 = pull sB vb IN2[] else DA1[]
, IN2 = jump IN3[ c = cmp va vb ]
, IN3 = case (c == EQ) EQ0[] else NE0[]

−− cmp va vb = EQ
, EQ0 = push sOut (a,b) EQ1[]
, EQ1 = drop sA EQ2[]
, EQ2 = drop sB IN0[]

−− cmp va vb , EQ
, NE0 = case (c == LT) LT0[] else GT0[]

−− cmp va vb = LT
, LT0 = drop sA LT1[]
, LT1 = pull sA va IN2[] else DB1[]

−− cmp va vb = GT
, GT0 = drop sB GT1[]
, GT1 = pull sB vb IN2[] else DA1[]

−− sB closed; drain sA
, DA0 = pull sA DA1[] else EX0[]
, DA1 = drop sA DA0[]

−− sA closed; drain sB
, DB0 = pull sB DB1[] else EX0[]
, DB1 = drop sB DB0[]

−− sA and sB closed
, EX0 = close sOut EX1[]
, EX1 = exit } }

Listing 4.5: Process implementation of join



4.2 P R O C E S S D E F I N I T I O N 81

network semantics so that producers do not push to terminated processes, e�ectively discon-
necting the consumer from all inputs upon termination. Such a change to the semantics would
allow concurrent execution of unfused process networks with bounded bu�ers, without the
processes having to perform draining. However, a fused result process, which performs the
job of two source processes, only terminates once both source processes have terminated; as
such, the result process would only disconnect once both source processes have terminated,
which may be later than necessary.

�e group of instructions at label DB0 executes when the sA input stream is �nished, and
drains the un�nished sB input stream.

Finally, the group of instructions at EX0 close the output stream and terminate the process.

4.2 P R O C E S S D E F I N I T I O N

�e formal grammar for process de�nitions is given in Figure 4.6. Variables, Channels and
Labels are speci�ed by unique names. We refer to the endpoint of a stream as a channel. A
particular stream may �ow into the input channels of several di�erent processes, but can only
be produced by a single output channel. For values and expressions we use an untyped lambda
calculus with a few primitives. �e ‘| |’ operator is boolean-or, ‘+’ addition, ‘/=’ not-equal, and
‘<’ less-than. �e special uninitialised value is used as a default value for uninitialised heap
variables, and inhabits every type.

A Process is a record with �ve �elds: the ins �eld speci�es the input channels; the outs �eld
speci�es the output channels; the heap �eld speci�es the process-local heap; the label �eld
speci�es the label of the instruction currently being executed; and the instrs �eld speci�es a
map of labels to instructions. We use the same record when specifying both the de�nition of a
particular process, as well as when giving the evaluation semantics. In the process de�nition,
the heap �eld gives the initial heap of the process, and any variables with unspeci�ed values
are assumed to be the uninitialised value. �e label �eld gives the entry-point in the process
de�nition, though during evaluation it is the label of the instruction currently being executed.
Likewise, we usually only list channel names in the ins �eld in the process de�nition, though
during evaluation they are also paired with their current InputState. If an InputState is not
speci�ed we assume it is ‘none’.

In the grammar of Figure 4.6, the InputState has four options: none, which means no value
is currently stored in the associated stream bu�er variable; (pending Value), which gives the
current value in the stream bu�er variable and indicates that it has not yet been copied into
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Exp, e ::= x | v | e e | (e | | e) | e + e | e /= e | e < e
Value, v ::= N | B | (λx . e) | uninitialised
Heap, bs ::= · | bs , x = v
Updates, us ::= · | us , x = e

Process, p ::= process

ins: (Channel 7→ InputState)
outs: {Channel}
heap: Heap
label: Label
instrs: (Label 7→ Instruction)

InputState ::= none | pending Value | have | closed

Variable, x → (value variable)
Channel, c → (channel name)
Label, l → (label name)
ChannelStates = (Channel 7→ InputState)

Instruction ::= pull Channel Variable Next Next
| push Channel Exp Next
| close Channel Next
| drop Channel Next
| case Exp Next Next
| jump Next
| exit

Next = Label × Updates

Figure 4.6: Process de�nitions
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a process-local variable; have, which means the pending value has been copied into a process-
local variable; and closed, which means the producer has signalled that the channel is �nished
and will not receive any more values. �e Value a�ached to the pending state is used when
specifying the evaluation semantics of processes. When performing the fusion transform, the
Value itself will not be known, but we can still reason statically that a process must be in the
pending state. When de�ning the fusion transform in Section 4.3, we will use a version of
InputState with only this statically known information.

�e instrs �eld of the Process maps labels to instructions. �e possible instructions are:
pull, which tries to pull the next value from a channel into a given heap variable and blocks
until the producer pushes a value or closes the channel; push, which pushes the value of an
expression to an output channel; close, which signals the end of an output channel; drop,
which indicates that the current value pulled from a channel is no longer needed; case, which
branches based on the result of a boolean expression; jump, which causes control to move to a
new instruction; and exit, which signals that the process is �nished.

Instructions include a Next �eld containing the label of the next instruction to execute, as
well as a list of Variable× Exp bindings used to update the heap. �e list of update bindings is
a�ached directly to instructions to make the fusion algorithm easier to specify, in contrast to
a presentation with a separate update instruction.

4.2.1 Execution

�e dynamic execution semantics for a process network consists of:

1. Injection of an action, which can denote an empty message, a pushed channel value, or a
channel being closed, into a process or a network. Each individual process only accepts
an injected action when it is ready for it, and injection into a network succeeds only
when all processes accept it.

2. Advancing a single process from one state to another, producing an output action. Ad-
vancing a network succeeds when any of the processes in the network can advance, and
the output action can be injected into all the other processes.

3. Feeding input values from the environment into processes, and collecting outputs of
the processes. Feeding alternates between Injecting values from the environment and
Advancing the network, until all processes have terminated. When a process pushes
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a value to an output channel, we collect this value in a list associated with the output
channel.

Execution of a network is non-deterministic. At any moment, several processes may be
able to take a step, while others are blocked. As with Kahn processes (Kahn and Mac�een,
1977), pulling from a channel is blocking, which enables the overall sequence of values on
each output channel to be deterministic. Unlike Kahn processes, pushing to a channel can
also block. Each consumer has a single element bu�er, and pushing only succeeds when that
bu�er is empty.

Importantly, it is the order in which values are pushed to each particular output channel
which is deterministic, whereas the order in which di�erent processes execute their instruc-
tions is not. When we fuse two processes, we choose one particular instruction ordering that
enables the network to advance without requiring unbounded bu�ering. �e single ordering is
chosen by heuristically deciding which pair of states to merge during fusion, and is discussed
in Section 4.2.2.

Each channel may be pushed to by a single process only, so in a sense each output channel is
owned by a single process. �e only inter-process communication is via channels and streams.
Our model is “pure data �ow” as there are no side-channels between processes — in contrast
to “impure data �ow” systems such as StreamIt (�ies et al., 2002).

Injection

Figure 4.7 de�nes the grammar of actions produced by advancing a process in a process net-
work, and gives the rules for injecting these actions into processes. Injection is a meta-level
operation, in contrast to pull and push, which are instructions in the object language. �e
statement (p; inject a ⇒ p′) reads “given process p, injecting action a yields an updated
process p′”. An action a is a message describing the state change that can occur to a channel,
with three options: (·), the empty action, used when a process simply updates internal state;
(push Channel Value), which encodes the value a process pushes to one of its output channels;
and (close Channel), which denotes the end of the stream. �e injects form is similar to the
inject form, and operates on an entire process network instead of a single process.

Rule (InjectPush) injects a single value into a single process. �e value is stored as a
(pending v) binding in the InputState of the associated channel of the process. �e InputState
acts as a single element bu�er, and must be empty (none) for injection to succeed. Rule (Inject-
Close) injects a close message and updates the input state in a similar way.
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Action, a ::= · | push Channel Value | close Channel

Process; inject Action⇒ Process

p[ins][c] = none

p; inject (push c v) ⇒ p [ins 7→ (p[ins][c 7→ pending v])]
(InjectPush)

p[ins][c] = none

p; inject (close c) ⇒ p [ins 7→ (p[ins][c 7→ closed])]
(InjectClose)

c < p[ins]

p; inject (push c v) ⇒ p
(InjectNopPush) c < p[ins]

p; inject (close c) ⇒ p
(InjectNopClose)

p; inject (·) ⇒ p
(InjectNopInternal)

{Process}; injects Action⇒ {Process}

{ pi ; inject a ⇒ p′i }
i

{pi}
i ; injects a ⇒ {p′i }i

(InjectMany)

Figure 4.7: Injection of message actions into input channels
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Rules (InjectNopPush) and (InjectNopClose) allow processes that do not use a particular
named channel to ignore messages injected into that channel. Rule (InjectNopInternal) allows
processes to ignore empty messages.

Rule (InjectMany) injects a single value into a network. We use the single process judgment
form to inject the value into all processes, which must succeed for all of them. To inject
a push or close message into a process network, all the processes which do not ignore the
message must be ready to accept the message by having the corresponding InputState set to
none; otherwise, the process would require more than a single-element bu�er to store multiple
messages.

Advancing

Figure 4.8 gives the rules for advancing a single process and process networks. �e statement
(i; is; bs

a
=⇒ l ; is′; us′) reads “instruction i , given channel states is and the heap bindings bs ,

passes control to instruction at label l and yields new channel states is′, heap update expres-
sions us′, and performs an output action a.”

Rule (PullPending) applies when the instruction is a pull instruction. �e rule takes the
pending value v from the channel state and produces a heap update to copy this value into
the variable x in the pull instruction. Control is passed to the �rst output label, l . We use the
syntax (us ,x = v) to mean that the list of updates us is extended with the new binding (x = v).
In the result channel states, the state of the input channel c is updated to have, to indicate that
the value has been copied into the local variable.

Rule (PullClosed) applies when the channel state is closed, passing control to the second
output label, l′. As the channel remains closed, there is no need to update the channel state as
in the (PullPending) rule.

Rule (Push) evaluates the expression e under heap bindings bs to a valuev , and produces a
corresponding action which carries this value. �e judgment (bs ` e ⇓ v) expresses standard
untyped lambda calculus reduction, using the heap bs for the values of free variables. �is
evaluation is completely standard, and we do not discuss it further.

Rule (Close) emits a close action; once injected, this action will transition the recipients’
channel states to closed. Once a channel is closed it can no longer be pushed to, as the re-
cipients’ channel states cannot transition back to the none state required by the (InjectPush)
rule.

Rule (Drop) changes the input channel state from have to none. A drop instruction can only
be executed a�er pull has set the input channel state to have.
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Instruction; ChannelStates; Heap
Action
====⇒ Label; ChannelStates; Updates

is[c] = pending v

pull c x (l ,us) (l′,us′); is; Σ
·
=⇒ l ; is[c 7→ have]; (us ,x = v)

(PullPending)

is[c] = closed

pull c x (l ,us) (l′,us′); is; Σ
·
=⇒ l′; is; us′

(PullClosed)

Σ ` e ⇓ v

push c e (l ,us); is; Σ
push c v
======⇒ l ; is; us

(Push)

close c (l ,us); is; Σ
close c
=====⇒ l ; is; us

(Close)

is[c] = have

drop c (l ,us); is; Σ
·
=⇒ l ; is[c 7→ none]; us

(Drop)
jump (l ,us); is; Σ

·
=⇒ l ; is; us

(Jump)

Σ ` e ⇓ True

case e (lt ,ust ) (l f ,us f ); is; Σ
·
=⇒ lt ; is; ust

(CaseT)

Σ ` e ⇓ False

case e (lt ,ust ) (l f ,us f ); is; Σ
·
=⇒ l f ; is; us f

(CaseF)

Process
Action
====⇒ Process

p[instrs][p[label]]; p[ins]; p[heap]
a
=⇒ l ; is; us p[heap] ` us ⇓ bs

p
a
=⇒ p [label 7→ l , heap 7→ (p[heap]Cbs), ins 7→ is]

(Advance)

{Process}
Action
====⇒ {Process}

pi
a
=⇒ p′i ∀j | j , i . pj ; inject a ⇒ p′j

{p0 . . .pi . . .pn}
a
=⇒ {p′0 . . .p

′
i . . .p

′
n}

(AdvanceMany)

Figure 4.8: Advancing processes
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Rule (Jump) produces a new label and associated update expressions. Rules (CaseT) and
(CaseF) evaluate the scrutinee e and emit the appropriate label.

�ere is no corresponding rule for the exit instruction, which denotes a �nished process.
�e statement (p

a
=⇒ p′) reads “processp advances to new processp′, yielding action a”. Rule

(Advance) advances a single process. We look up the current instruction for the process’ label
and pass it, along with the channel states and heap, to the above single instruction judgment.
�e update expressions us from the single instruction judgment are reduced to values before
updating the heap. We use (us C bs) to replace bindings in us with new ones from bs . As the
update expressions are pure, the evaluation can be done in any order.

�e statement (ps
a
=⇒ ps′) reads “the network ps advances to the network ps′, yielding

action a”. Rule (AdvanceMany) allows an arbitrary, non-deterministically chosen process in
the network to advance to a new state while yielding an output action a. For this to succeed,
it must be possible to inject the action into all the other processes in the network. As all
consuming processes must accept the output action at the time it is created, there is no need
to bu�er it further in the producing process. When any process in the network produces an
output action, we take that as the action of the whole network.

Feeding

Figure 4.9 gives the rules for collecting output actions and feeding external input values to the
network. �ese rules exchange input and output values with the environment in which the
network runs.

�e statement (i; ps ⇒ o) reads “when fed input channel values i , network ps executes to
termination of all processes, and produces output channel values o”. �e input channel values
map i contains a list of values for each input channel; these channels are inputs of the overall
network, and cannot be outputs of any processes. �e output channel values map o contains
the list of values for every output channel in the network. In a concrete implementation the
input and output values would be transported over some IO device, but for the semantics we
describe the abstract behavior only.

Rule (FeedExit) terminates execution of a network when all processes have terminated. We
require the input channel values map to be empty, instead of allowing the terminated network
to ignore any le�over input values. �e output channel values map is empty.

Rule (FeedInternal) allows the network to perform local computation in the context of the
channel values. �is does not a�ect the input or output values, and execution proceeds with
the updated process network.
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(Channel 7→ Value) ; {Process} ⇒ (Channel 7→ Value)

∀p ∈ ps . p[instrs][p[label]] = exit

∅; ps ⇒ ∅ (FeedExit) ps
·
=⇒ ps′ i; ps′⇒ o

i; ps ⇒ o
(FeedInternal)

ps
push c v
======⇒ ps′ i; ps′⇒ o

i; ps ⇒ o[c 7→ ([v] ++ o[c])]
(FeedPush) ps

close c
=====⇒ ps′ i; ps′⇒ o

i; ps ⇒ o[c 7→ []]
(FeedClose)

ps; injects (push c v) ⇒ ps′ i[c 7→ vs]; ps′⇒ o

i[c 7→ ([v] ++ vs)]; ps ⇒ o
(FeedEnvPush)

ps; injects (close c) ⇒ ps′ (i \ {c}); ps′⇒ o

i[c 7→ []]; ps ⇒ o
(FeedEnvClose)

Figure 4.9: Feeding process networks

Rule (FeedPush) collects an output action containing a pushed value (push c v) produced
by a network. �e input is fed to the updated process, which results in output channel map o.
At this point, the output channel map o contains the result of executing the remainder of the
process network, a�er the push has happened. In the output, the pushed value v is added to
the start of the list corresponding to the output channel c .

Rule (FeedClose) collects a close output action (close c) produced by a network. �e output
channel map for the channel c is set to the empty list; earlier pushes will pre�x elements to
this list using rule (FeedPush).

Rule (FeedEnvPush) injects values from the external environment as push messages. �e
updated process network, a�er having the value injected, is fed the remainder of the input
without the pushed value.

Rule (FeedEnvClose) injects a close message for an external input stream when the cor-
responding list is empty. When execution continues with the updated process network, the
input stream is removed from the channel map using the (i \ {c}) syntax.
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4.2.2 Non-deterministic execution order

�e execution rules of Figure 4.8 and Figure 4.9 are non-deterministic in several ways. Rule
(AdvanceMany) allows any process to perform any action at any time, provided all other pro-
cesses in the network are ready to accept the action; (FeedEnvPush) and (FeedEnvClose) also
allow new values and close messages to be injected from the environment, provided all pro-
cesses that use the channel are ready to accept the value or close message.

In the semantics, allowing the execution order of processes to be non-deterministic is criti-
cal, as it de�nes a search space where we might �nd an order that does not require unbounded
bu�ering. For a direct implementation of concurrent processes using message passing and op-
erating system threads, an actual, working, execution order would be discovered dynamically
at runtime. In contrast, the role of our fusion system is to construct one of these working or-
ders statically. In the fused result process, the instructions will be scheduled so that they run
in one of the orders that would have arisen if the network were executed dynamically. Fusion
also eliminates the need to pass messages between processes — once they are fused we can
just copy values between heap locations.

4.3 F U S I O N

Our core fusion algorithm constructs a static execution schedule for a single pair of processes.
In Section 4.5.1, we fuse a whole process network by fusing successive pairs of processes until
only one remains.

Figure 4.10 de�nes some auxiliary grammar used during fusion. We extend the Label gram-
mar with a new alternative, LabelF× LabelF for the labels in a fused result process. Each LabelF
consists of a Label from a source process, paired with a map from Channel to the statically
known part of that channel’s current InputState. When fusing a whole network, as we fuse
pairs of individual processes the labels in the result collect more and more information. Each
label of the �nal, completely fused process encodes the joint state that all the original source
processes would be in at that point.

We also extend the existing Variable grammar with a (chan c) form which represents the
bu�er variable associated with channel c. We only need one bu�er variable for each channel,
and naming them like this saves us from inventing fresh names in the de�nition of the fusion
rules. We used the name (chan_tp) back in Section 4.1.4 to avoid introducing a new mechanism
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Label ::= . . . | LabelF × LabelF | . . .
LabelF = Label × (Channel 7→ InputStateF)
InputStateF ::= noneF | pendingF | haveF | closedF
Variable ::= . . . | chan Channel | . . .

ChannelType2 ::= in2 | in1 | in1out1 | out1

Figure 4.10: Fusion type de�nitions.

at that point in the discussion, when in fact the fused process would use a bu�er variable called
(chan timeprices).

Still in Figure 4.10, ChannelType2 classi�es how channels are used, and possibly shared,
between two processes. Type in2 indicates that both processes pull from the same channel, so
these actions must be coordinated. Type in1 indicates that only a single process pulls from the
channel. Type in1out1 indicates that one process pushes to the channel and the other pulls.
Type out1 indicates that the channel is pushed to by a single process. Each output channel is
uniquely owned and cannot be pushed to by more than one process.

Figure 4.11 de�nes function fusePair, which fuses a pair of processes, constructing a result
process that does the job of both. We start with a joint label l0 formed from the initial labels
of the two source processes. We then use tryStepPair to statically choose which of the two
processes to advance, and hence which instruction to execute next. �e possible destination
labels of that instruction (computed with outlabels from Figure 4.14) de�ne new joint labels
and reachable states. As we discover reachable states, we add them to a map bs of joint label
to the corresponding instruction, and repeat the process to a �xpoint where no new states can
be discovered.

Figure 4.12 de�nes function tryStepPair, which decides which of the two input processes to
advance. It starts by calling tryStep for both processes. If both can advance, we use heuristics
to decide which one to run �rst.

Clauses (DeferExit1) and (DeferExit2) ensure that the fused process only terminates once
both processes are ready to terminate; if either has remaining work, the process with remain-
ing work will execute. �e clauses achieve this by checking if either process is at an exit

instruction, and if so, choosing the other process. �e instruction for the second process was
computed by calling tryStep with the label arguments swapped, so in (DeferExit2) we need to
swap the labels back with swaplabels (from Figure 4.14). �e result process terminates once
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fusePair : Process→ Process→ Maybe Process
fusePair p q
| Just is← go {} l0
= Just (process

ins: {c | c = t ∈ cs, t ∈ {in1, in2}}
outs: {c | c = t ∈ cs, t ∈ {in1out1, out1}}
heap: p[heap] ∪ q[heap]

label: l0
instrs: is)

| otherwise = Nothing
where
cs = channels p q
l0 =

(
(p[label], {c = noneF | c ∈ p[ins]})

, (q[label], {c = noneF | c ∈ q[ins]})
)

go bs (lp , lq)
| (lp , lq) ∈ bs
= Just bs
| Just b ← tryStepPair cs lp p[instrs][lp] lq q[instrs][lq]
= foldM go (bs ∪ {(lp , lq) = b}) (outlabels b)
| otherwise = Nothing

Figure 4.11: Fusion of pairs of processes
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tryStepPair : (Channel 7→ ChannelType2)
→ LabelF→ Instruction→ LabelF→ Instruction
→ Maybe Instruction

tryStepPair cs lp ip lq iq =
match (tryStep cs lp ip lq , tryStep cs lq iq lp) with
(Just i′p , Just i′q)
| exit← i′q → Just i′p (DeferExit1)
| exit← i′p → Just (swaplabels i′q) (DeferExit2)
| jump ← i′p → Just i′p (PreferJump1)
| jump ← i′q → Just (swaplabels i′q) (PreferJump2)
| pull ← i′q → Just i′p (DeferPull1)
| pull ← i′p → Just (swaplabels i′q) (DeferPull2)
(Just i′p , ) → Just i′p (Run1)
( , Just i′q) → Just (swaplabels i′q) (Run2)
(Nothing, Nothing)→ Nothing (Deadlock)

Figure 4.12: Fusion step coordination for a pair of processes.

both processes have terminated at an exit instruction; in this case, clause (DeferExit1) will
return the exit instruction from the �rst process.

Clauses (PreferJump1) and (PreferJump2) prioritise processes that can perform a jump. �is
helps collect jump instructions together so they are easier for post-fusion optimisation to han-
dle (Section 4.5).

Similarly, clauses (DeferPull1) and (DeferPull2) defer pull instructions: if one of the in-
structions is a pull, we advance the other one. We do this because pull instructions may
block, while other instructions are more likely to produce immediate results.

Clauses (Run1) and (Run2) apply when the above heuristics do not apply, or only one of
the processes can advance.

Clause (Deadlock) applies when neither process can advance, in which case the processes
cannot be fused together and fusion fails.

Figure 4.13 de�nes function tryStep, which schedules a single instruction. �is function
takes the map of channel types, along with the current label and associated instruction of one
process (which we call the le� process), and the current label of the other (right) process. �e
tryStep function is called twice in tryStepPair, once for each process, so the le� process may
correspond to either input process at any given time.
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tryStep : (Channel 7→ ChannelType2) → LabelF→ Instruction→ LabelF→ Maybe Instruction
tryStep cs (lp , sp) ip (lq , sq) = match ip with

jump (l′,u′) (LocalJump)
→ Just (jump

(
(l′, sp), (lq , sq), u′

)
)

case e (l′t ,u′t ) (l′f ,u′
f
) (LocalCase)

→ Just (case e
(
(l′t , sp), (lq , sq), u′t

) (
(l′
f
, sp), (lq , sq), u′f

)
)

push c e (l′,u′)
| cs[c] = out1 (LocalPush)
→ Just (push c e

(
(l′, sp), (lq , sq), u′

)
)

| cs[c] = in1out1 ∧ sq[c] = noneF (SharedPush)
→ Just (push c e

(
(l′, sp), (lq , sq[c 7→ pendingF ]), u′[chan c 7→ e]

)
)

pull c x (l′o ,u′o) (l′c ,u′c)
| cs[c] = in1 (LocalPull)
→ Just (pull c x

(
(l′o , sp), (lq , sq), u′o

) (
(l′c , sp), (lq , sq), u′c

)
)

| (cs[c] = in2∨ cs[c] = in1out1) ∧ sp[c] = pendingF (SharedPullPending)
→ Just (jump

(
(l′o , sp[c 7→ haveF ]), (lq , sq), u′o[x 7→ chan c]

)
)

| (cs[c] = in2∨ cs[c] = in1out1) ∧ sp[c] = closedF (SharedPullClosed)
→ Just (jump

(
(l′c , sp), (lq , sq), u′c

)
)

| cs[c] = in2 ∧ sp[c] = noneF ∧ sq[c] = noneF (SharedPullInject)
→ Just (pull c (chan c)(

(lp , sp[c 7→ pendingF ]), (lq , sq[c 7→ pendingF ]), []
)(

(lp , sp[c 7→ closedF ]), (lq , sq[c 7→ closedF ]), []
)
)

drop c (l′,u′)
| cs[c] = in1 (LocalDrop)
→ Just (drop c

(
(l′, sp), (lq , sq), u′

)
)

| cs[c] = in1out1 (ConnectedDrop)
→ Just (jump

(
(l′, sp[c 7→ noneF ]), (lq , sq), u′

)
)

| cs[c] = in2 ∧ (sq[c] = haveF ∨ sq[c] = pendingF ) (SharedDropOne)
→ Just (jump

(
(l′, sp[c 7→ noneF ]), (lq , sq), u′

)
)

| cs[c] = in2 ∧ sq[c] = noneF (SharedDropBoth)
→ Just (drop c

(
(l′, sp[c 7→ noneF ]), (lq , sq), u′

)
)

close c (l′,u′)
| cs[c] = out1 (LocalClose)
→ Just (close c

(
(l′, sp), (lq , sq), u′

)
)

| cs[c] = in1out1 ∧ sq[c] = noneF (SharedClose)
→ Just (close c

(
(l′, sp), (lq , sq[c 7→ closedF ]), u′

)
)

exit (LocalExit)
→ Just exit

| otherwise (Blocked)
→ Nothing

Figure 4.13: Fusion step for a single process of the pair.
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Clause (LocalJump) applies when the le� process wants to jump. In this case, the result
instruction simply performs the corresponding jump, leaving the right process where it is.
�is clause corresponds to a static version of the rule (Jump) for advancing processes during
execution (Section 4.2.1).

Clause (LocalCase) is similar, except there are two Next labels.

Clause (LocalPush) applies when the le� process wants to push to a non-shared output
channel. In this case the push can be performed directly, with no additional coordination
required.

Clause (SharedPush) applies when the le� process wants to push to a shared channel. Push-
ing to a shared channel requires the downstream process to be ready to accept the value at the
same time. We encode this constraint by requiring the static input state of the downstream
channel to be noneF . When this constraint is satis�ed, the result instruction stores the pushed
value in the stream bu�er variable (chan c) and sets the static input state to pendingF , which
indicates that the new value is now available. �is clause corresponds to a static version of
the evaluation rule (Push) for advancing the le� process, combined with the rule (InjectPush)
for injecting the push action into the right process.

Still in Figure 4.13, clause (LocalPull) applies when the le� process wants to pull from a
local channel, which requires no coordination.

Clause (SharedPullPending) applies when the le� process wants to pull from a shared chan-
nel that the other process either pulls from or pushes to. We know that there is already a value
in the stream bu�er variable, because the state for that channel is pendingF . �e result instruc-
tion copies the value from the stream bu�er variable into a variable speci�c to the le� source
process. �e corresponding haveF channel state in the result label records that the value has
been successfully pulled.

Clause (SharedPullClosed) applies when the le� process wants to pull from a shared chan-
nel that the other process either pulls from or pushes to, and the channel is closed. �e result
instruction jumps to the close output label.

Clause (SharedPullInject) applies when the le� process wants to pull from a shared channel
that both processes pull from, and neither already has a value. �e result instruction is a pull

that loads the stream bu�er variable, leaving the labels the same and updating the channel
state for both processes. In the next instruction, the le� process will try to pull again with the
updated channel state, and one of the clauses (SharedPullPending) or (SharedPullClosed) will
apply.
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Clause (LocalDrop) applies when the le� process wants to drop the current value that it
read from an unshared input channel, which requires no coordination.

Clause (ConnectedDrop) applies when the le� process wants to drop the current value that
it received from an upstream process. As the value will have been sent via a heap variable in-
stead of being pulled from a channel, the result instruction just performs a jump while updating
the static channel state.

Clauses (SharedDropOne) and (SharedDropBoth) apply when the le� process wants to drop
from a shared channel that is read by both processes. In (SharedDropOne), the channel states
reveal that the other process is still using the value. In this case, the result instruction is a jump

updating the channel state to note that the le� process has dropped. In (SharedDropBoth), the
channel states reveal that the other process has already dropped its copy of the channel value
using clause (SharedDropOne). In this case, the result instruction is a real drop, because we
are sure that neither process requires the value any longer.

Clause (LocalClose) applies when the le� process wants to close an unshared output chan-
nel, which requires no coordination.

Clause (SharedClose) applies when the le� process wants to close a shared output channel
that the other process pulls from. Closing the channel updates the channel state and requires
the downstream process to have dropped any previously read values, just as the (InjectClose)
evaluation rule requires the downstream process to have none as its input state.

Clause (LocalExit) applies when the le� process wants to �nish execution, which requires
no coordination here, but causes the other process to be prioritised in the (DeferExit) clauses
in the earlier de�nition of tryStepPair.

Clause (Blocked) returns Nothing when no other clauses apply, meaning that this process
is waiting for the other process to advance.

All the clauses in the tryStep function work together to perform a static version of the
dynamic process execution. Each clause checks whether the le� process can advance given
the statically known channel state. When the le� process advances normally in the dynamic
execution rules, it produces an output action to be injected into other processes in the network.
�e clauses in tryStep statically coordinate with the right process, checking whether the result
action from advancing the le� process can be injected into the right process, given the statically
known channel state of the right process. Although there are many clauses, the translation
from the advance and injection rules to the clauses is relatively straightforward.

Figure 4.14 contains de�nitions of some utility functions which we have already mentioned.
Function channels computes the ChannelType2 map for a pair of processes. Function outlabels
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channels : Process→ Process→ (Channel 7→ ChannelType2)
channels p q = {c = in2 | c ∈ (ins p ∩ ins q)}

∪ {c = in1 | c ∈ (ins p ∪ ins q) ∧ c < (outs p ∪ outs q)}
∪ {c = in1out1 | c ∈ (ins p ∪ ins q) ∧ c ∈ (outs p ∪ outs q)}
∪ {c = out1 | c < (ins p ∪ ins q) ∧ c ∈ (outs p ∪ outs q)}

outlabels : Instruction→ {Label}
outlabels (pull c x (l ,u) (l′,u′)) = {l , l′}
outlabels (drop c (l ,u)) = {l}
outlabels (push c e (l ,u)) = {l}
outlabels (close c (l ,u)) = {l}
outlabels (case e (l ,u) (l′,u′)) = {l , l′}
outlabels (jump (l ,u)) = {l}
outlabels (exit) = {}

swaplabels : Instruction→ Instruction
swaplabels (pull c x ((l1, l2),u) ((l′1, l′2),u′)) = pull c x ((l2, l1),u) ((l′2, l′1),u′)
swaplabels (drop c ((l1, l2),u)) = drop c ((l2, l1),u)
swaplabels (push c e ((l1, l2),u)) = push c e ((l2, l1),u)
swaplabels (close c ((l1, l2),u)) = close c ((l2, l1),u)
swaplabels (case e ((l1, l2),u) ((l′1, l′2),u′)) = case e ((l2, l1),u) ((l′2, l′1),u′)
swaplabels (jump ((l1, l2),u)) = jump ((l2, l1),u)
swaplabels (exit) = exit

Figure 4.14: Utility functions for fusion
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gets the set of output labels for an instruction, which is used when computing the �xpoint of
reachable states. Function swaplabels �ips the order of the compound labels in an instruction.

4.3.1 Static deadlock detection

In the de�nition of tryStep, clause (Blocked) applies when the source process is waiting for the
other process to advance. If both processes are blocked waiting for each other, then the two
processes are stuck. Clause (Deadlock) from tryStepPair applies, and fusion fails.

�is fusion failure corresponds to a static approximation of deadlock detection. As ob-
served by Buck and Lee (1993), static deadlock detection for Kahn process networks is in gen-
eral undecidable. Our deadlock detection is sound, but not complete. If we detect a deadlock
statically, then concurrent execution of the original Kahn process network may or may not
deadlock at runtime. If we do not detect a deadlock, then the original Kahn process network
is guaranteed to be free from deadlocks.

Deadlock detection algorithms for Kahn process networks do exist, but perform deadlock
detection dynamically rather than statically (Allen et al., 2007; Jiang et al., 2008). �ese al-
gorithms tend to focus on arti�cial deadlocks, which are deadlocks introduced by restricting
the size of channel bu�ers. Arti�cial deadlocks are identi�ed dynamically, and resolved by
increasing the bu�er size (Geilen and Basten, 2003; Parks, 1995). Because these systems per-
form dynamic scheduling and deadlock detection, process networks using these systems tend
to require larger, more coarse-grained processes to o�set the dynamic scheduling overhead
(Chen et al., 1990).

4.4 S Y N C H R O N I S I N G P U L L I N G B Y D R O P P I N G

�e drop instruction exists to synchronise two consumers of the same input, so that both
consumers pull the same value at roughly the same time. When fusing two consumers, the
fusion algorithm uses drops when coordinating the consumers to ensure that one consumer
cannot start processing the next element until the other has �nished processing the current
element. Drop instructions are not necessary for correctness, or for ensuring boundedness of
bu�ers, but they improve locality in the fused process.

Recall the priceOverTime example, which computes the correlation and regression of an
input stream. �e dependency graph for priceOverTime is shown in Figure 4.15.
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priceOverTime

stock

map

regression correlation

Figure 4.15: Dependency graph for priceOverTime example

Figure 4.16 shows an example execution of the correlation and regression processes
from priceOverTime, with an input stream containing two elements. Execution is displayed
as a sequence diagram. Each process and output stream is represented as a vertical line which
communicates with other processes by messages, represented by arrows. �e names of each
stream and process are wri�en above the line, and time �ows downwards. To highlight the
synchronisation between regression and correlation processes, we use placeholder values
such asA and B instead of actual stream values, and show only a subset of the whole execution,
omi�ing the stock input stream and the internal messages of the map process.

In the de�nition of the fold process template, the update binding a�ached to the drop
instruction updates the fold state with the most recently pulled value. We use the shorthand
(drop [update A]) to signify that the process updates its fold state with the pulled value A a�er
dropping the element.

Execution starts with the map process pushing the value A to both of its consumers, the
regression and correlation processes. In the execution semantics from Section 4.2.1, this
push changes the input state of each recipient process from none to pending, to signify that
there is a value available to pull. At this point, the map process cannot push again until both
consumers have pulled and dropped the A value. Next, the regression process pulls the
value A, temporarily changing its input state to have, before using and dropping the value,
changing the input state back to none. In the execution semantics, the pull instruction updates
the process’ local state, but does not communicate with any other process; the diagram shows
the pull instruction as the process sending a message to itself. �e correlation process now
performs the same. A�er both consumers have dropped the input value, the map process is
able to push the next value, B, which the consumers operate on similarly. Finally, the map
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map regression reg out correlation cor out

push A

pull A

drop [update A]

pull A

drop [update A]

push B

pull B

drop [update B]

pull B

drop [update B]

close
push R

close
push C

close

Figure 4.16: Sequence diagram of a possible linearised execution of priceOverTime, showing
drop synchronisation
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process sends close messages to both consumers, which both push the results of the folds to
their corresponding output streams before closing them. In this execution, both consumer
processes transform the same element at roughly the same time, because the next element is
only available once both have dropped, thereby agreeing to accept the next element.

Figure 4.17 shows a hypothetical execution which may occur if our process network seman-
tics did not use drop instructions to synchronise between all consumers. In this execution, we
replace the drop instructions with a jump instruction, using the shorthand (jump [update A])
to signify updating the fold state. As before, execution starts with the map process pushing the
A value, which both consumers pull. Without drop synchronisation, the single-element bu�er
is cleared as soon as the process pulls, allowing the map process to push another element
to both consumers. Now, the regression process executes and updates the fold state with
both values A and B. �e regression process has consumed both elements before the second
consumer, correlation, has even looked at the �rst. �is is not a problem for concurrent ex-
ecution: the execution results in the same value, and the bu�er is still bounded, containing at
most one element. However, when we fuse this network into a single process, we commit to a
particular interleaving of execution of the processes in the network. When performing fusion,
we would prefer to use the previous interleaving with drop synchronisation to this unsynchro-
nised interleaving, because the process with the unsynchronised interleaving would need to
keep track of two consecutive elements at the same time. Keeping both elements means the
process requires more live variables, which makes it less likely that both elements will �t in the
available registers or cache when we eventually convert the fused process to machine code.

4.5 T R A N S F O R M I N G P R O C E S S N E T W O R K S

�e fusion algorithm described in Section 4.3 operates on a pair of source processes. For
process networks that contain more than two processes, we repeatedly fuse pairs of processes
in the network together until only one process remains, or until no more fusion is possible. �e
remaining process performs the job of the entire original process network. When the process
network contains a producer with multiple consumers, the result process coordinates between
all the consumers to reach consensus on when the producer can push the next value. We use
global knowledge of the network to coordinate with all consumers statically, con�dent that we
have not missed any consumers. In contrast, shortcut fusion systems such as (Gill et al., 1993)
use rewrite rules to remove intermediate bu�ers and require only local knowledge, looking at
each edge in the network in isolation, but cannot coordinate between multiple consumers. In
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map regression reg out correlation cor out

push A

pull A

pull A

push B

jump [update A]

pull B

jump [update B]

jump [update A]

pull B

close
push R

close

jump [update B]

push C

close

Figure 4.17: Sequence diagram for a possible linearised execution of priceOverTime, using a
hypothetical semantics without drop synchronisation
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cases where shortcut fusion cannot fuse it fails silently, leaving the programmer unaware of
the failure. �is silence is also due to the local nature of rewrite rules: to know whether all
the processes have been fused, we need to know about all the processes.

When fusing a pair of processes, the fused result process tends to have more states than
each source process individually, because the fused process has to do the work of both source
processes. In general, the larger the source processes, the larger the result process will be, and
when we have many processes to fuse, the result will get progressively larger as we fuse more
processes in. If, during compilation, the result process becomes too large such that the process
does not �t in memory, then fusing in the next process will take longer, and code generation
will take longer. When repeatedly fusing the pairs of processes in a network, we perform some
simpli�cations between each fusion step. Since output channels can have multiple consumers,
the result process pushes to all output channels used by either source process, even though all
the consumers may have already been fused into the producer. We simplify the result program
by removing any remaining output channels which are not read by the rest of the network,
and replacing the corresponding push and close instructions with jump instructions. We then
remove these jump instructions, as well as those introduced by the fusion algorithm, by inlining
the destination of each jump instruction into its use-sites. �is iterative simpli�cation removes
some unnecessary states and simpli�es the process given to the next fusion step.

4.5.1 Fusing a network

As we shall see, when we fuse pairs of processes in a network, the order in which we fuse
pairs can determine whether fusion succeeds. Rather than trying all possible orders, of which
there are many, we use a bo�om-up heuristic to choose a fusion order. Figure 4.18 shows the
heuristically chosen fusion order for the priceAnalyses example. �e processes are nested
inside boxes; each box denotes the result of fusing a pair of processes, and inner-most boxes
are to be fused �rst. Each box is shaded to denote its nesting level, and the more deeply
nested a box is, the darker its shade. In priceOverTime, we start by fusing the correlation

process with its producer, map; we then fuse the resulting process with the regression pro-
cess. In priceOverMarket, we also start by fusing the correlation process with map, then
adding regression, and fusing in the join process. Finally, we fuse the result process for
priceOverTime with the result process for priceOverMarket.
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priceOverMarketpriceOverTime

stock

map

regression

join

index

correlation

map

correlation regression

Figure 4.18: Pairwise fusion ordering of the priceAnalyses network

a

append

zip

b c

append

Figure 4.19: Dependency graph for append2zip example

To demonstrate how fusion order can a�ect whether fusion succeeds, consider the follow-
ing list program, which takes three input lists, appends them, and zips the appended lists
together:

append2zip :: [a] → [a] → [a] → [(a,a)]

append2zip a b c =

let ba = b ++ a

bc = b ++ c

z = zip ba bc

in z
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We use the more convenient syntax for list programs rather than the process network
syntax introduced earlier, but in the discussion we interpret this program as a process network.
In the process network interpretation, each list combinator corresponds to a process, and each
list corresponds to a stream. �e dependency graph for the corresponding process network is
shown in Figure 4.19.

�e append2zip program appends the input streams, then pairs together the elements in
both appended streams. �e result of the two append processes, ba and bc, both contain the
elements from b stream, followed by the elements of the second append argument; stream a

or stream c respectively. �ese two streams, ba and bc, when paired together, will result in
each element of the b stream paired with itself, followed by elements of the two other streams
paired together.

Figure 4.20 shows an example execution of append2zip, displayed as a sequence diagram.
In this diagram, we omit the drop and pull internal messages for all processes, and focus instead
on the communication between processes. In the de�nition of feeding for process networks,
the (FeedEnvPush) rule takes values from external input streams and injects them into the
process network as push messages. We visualise feeding as the input stream itself pushing
elements to its consumers, just as if it were a separate process repeatedly pushing the elements.
Input stream a has elements [1, 2], input stream b has elements [3, 4], and input stream c has
elements [5, 6]. Input stream b has multiple consumers, so its elements are pushed to both
consumers at the same time.

�e execution has three sections. In the �rst section, all the values from the b stream are
pushed to both append processes, then paired together. In the second section, execution alter-
nates between the other streams, a and c, with one value from each. In the third section, the
remaining input streams are closed, causing the consumers to also close their output streams.

�e bo�om-most consumer process, zip, executes by alternately pulling from each of the
append processes. �e order in which a process pulls from its inputs is called its access pa�ern.
Each append process can only push when the zip process’ bu�er for that channel is empty:
append must wait for zip to read the most recent element before pushing a new element.
When each append process is waiting, its producer — the input stream — must also wait before
pushing the next element. �is waiting propagates the zip process’ access pa�ern upwards
through the append processes and to the input streams.

�is example contains three processes. �e fusion algorithm is not commutative or asso-
ciative, so we could perform fusion in twelve di�erent orders. Of these twelve orders, there
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a [1,2] b [3,4] c [5,6] b++a b++c zip z

push 3
push 3

push 3
push (3,3)

push 4
push 4

push 4
push (4,4)

close

push 1
push 1

push 5
push 5

push (1,5)
push 2

push 2
push 6

push 6
push (2,6)

close
close

close
close

close

Figure 4.20: Sequence diagram of execution of append2zip
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are two main categories, distinguished by whether we start by fusing the append processes
with each other, or start by fusing the zip process with one of the append processes.

If we fuse the two append processes together �rst, we interleave their instructions without
considering the access pa�ern of the zip process. �ere are many ways to interleave the two
processes; one possibility is that the fused process reads all of the shared pre�x from stream
b, then all of stream a, then all of stream c. For the shared pre�x, this interleaving alternates
between pushing to streams ba and bc. A�er the shared pre�x, this interleaving pushes the rest
of the stream ba, then pushes the rest of the stream bc. When we try to fuse the zip process
with the fused append processes with this interleaving, we get stuck. �e zip process needs to
alternate between its inputs, which works for the shared pre�x, but not for the remainder. By
fusing the two append processes together �rst, we risk choosing an interleaving that works
for the two append processes on their own, but does not take into account the access pa�ern
of the zip process.

Fusion does succeed if we fuse the zip process with one of the append processes �rst, then
fuse with the other append process. �e consumer, zip, must dictate the order in which the
append processes push; fusing the zip process �rst gives it this control. We start from the
consumer and fuse them upwards with their producers, because this allows the consumer to
impose its access pa�ern on the producers.

To fuse an arbitrary process network, we consider a restricted view of the dependency
graph, ignoring the overall output channels produced by the network. We start at the bo�om
of the dependency graph, �nding the sink processes, or those with no output edges. �ese sink
processes are the bo�om-most consumers which, like zip in our append2zip example, dictate
the access pa�ern on their inputs. For each sink process, we �nd its parents and fuse the
sink process with its parents. When the sink process has multiple parents, we need to choose
which parent to fuse with �rst. In the append2zip example, we can fuse the zip process
with its append parents in any order. In general, one parent may consume the other parent’s
output, and we choose the parent that consumes the other parent’s output. �is order allows
the consuming parent to impose its access pa�ern upon the producing parent. We repeatedly
fuse each sink process with its closest parent until there are no more parents.

A�er fusing each sink process with all its ancestors, there may remain multiple processes.
�is only occurs if the remaining processes do not share ancestors. �e remaining processes
also cannot share descendents, since if they had descendents they would not be sinks. �is
means the processes are completely unconnected, and do not communicate. We execute the
remaining processes as a dynamically-scheduled concurrent process network.
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b c

append append

ab ac bc

a

zip

b c

zip zip

ab ac bc

Figure 4.21: Dependency graphs for append3 and zip3 examples

�e fusion algorithm for pairs of processes fails and does not produce a result process when
two processes have con�icting access pa�erns on their shared inputs. As the access pa�erns
are determined statically, apparent con�icts may never occur at runtime; we instead make a
static approximation. In the implementation, we fuse as many pairs of processes together as
possible. If at any point we encounter a pair of processes which we cannot fuse together, we
display a compile-time warning telling the programmer that the network cannot be completely
fused. �e remaining partially-fused processes are executed concurrently.

Unfortunately, the above heuristic cannot always choose the correct fusion ordering. It is
not possible, in general, to choose the correct ordering based on the dependency graph alone.
Consider the following list program, append3, which appends three input lists in various or-
ders, producing three output lists. As with the append2zip example, we present the example
as a list program for syntactic convenience, while we interpret it as a process network:

append3 :: [a] → [a] → [a] → ([a],[a],[a])

append3 a b c =

let ab = a ++ b

ac = a ++ c

bc = b ++ c

in (ab, ac, bc)

�is process network can be executed with no bu�ering. First, read all of the a input
stream, then read the b stream, then read the c stream. �ere is no single consumer in this
example which imposes its access pa�ern on its producers, so our heuristic fails. �is process
network can only be fused if the process that produces ab and the process that produces bc
are �rst fused together. If we fused ab and ac together �rst, the fusion algorithm would make
an arbitrary decision of whether to read the b stream before, a�er, or interleaved with the c

stream. �e heuristic described will not necessarily choose the right order.
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Looking at the dependency graph alone, it is impossible to tell which is the right order for
fusion. If we take the append3 example and replace the append processes with zip processes,
the dependency graph remains the same, but either fusion order would work. Figure 4.21
shows the process networks of append3 and append3 replaced with zip processes. Whether
or not a particular fusion order works depends on the access pa�ern of the processes, which
is not shown in the dependency graph.

We propose to solve this in future work by modifying the fusion algorithm to be commu-
tative and associative. �ese properties would allow us to apply fusion in any order, knowing
that all orders produce the same result. We discuss this enhancement further in Section 8.1.
In the meantime, we fall back to dynamic scheduling and execute the partially-fused process
networks concurrently.

4.6 P R O O F S

Our fusion system is formalised in Coq1, and we have proved soundness of fusePair : if the
fused result process produces a particular sequence of values on its output channels, then this
is one of the possible sequences that would be produced by the two source processes. Note
that due to the non-determinism of process execution, the converse is not true for all source
processes: just because the two concurrent processes can produce a particular output sequence
does not mean the fused result process will as well — the fused result process uses only one of
the many possible orders. However, because the result of evaluating a Kahn process network
to completion is deterministic, we should be able to prove that, if fusion succeeds, the result
process produces the same overall result despite using potentially di�erent interleavings. �e
proof of result determinism is le� to future work.

�e proof of soundness is stated as follows:

Theorem Soundness (P1 : Program L1 C V1) (P2 : Program L2 C V2)

(ss : Streams) (h : Heap)

(l1 : L1) (is1 : InputStates C)

(l2 : L2) (is2 : InputStates C)

: EvalN (fuse P1 P2) ss h (LX l1 l2 is1 is2)

→ EvalNOriginal Var1 P1 P2 is1 ss h l1

∧ EvalNOriginal Var2 P2 P1 is2 ss h l2.

1 https://github.com/amosr/papers/tree/master/2017mergingmerges/proof

https://github.com/amosr/papers/tree/master/2017mergingmerges/proof
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�e Soundness theorem uses the relational predicate EvalN to evaluate the fused program,
and the predicate EvalNOriginal ensures that the original program evaluates with that pro-
gram’s subset of the result heap, using Var1 and Var2 to extract the variables. �e Streams

type corresponds to the channel value map used to accumulate stream elements while feeding
a process network (Figure 4.9), and the Heap type corresponds to the value store used while
advancing a single process (Figure 4.8).

�e Coq formalisation has some di�erences and simpli�cations from the system presented
earlier in this chapter. �e most important di�erence is that the processes in the Coq formal-
isation operate on in�nite streams, whereas our earlier presentation used �nite streams. �is
simpli�cation means that pull instructions take only one output label rather than two, and
we do not need the close or exit instructions. In the earlier presentation of fusion, the close

instruction performed fundamentally the same communication as the push instruction, except
that it sent a ‘close’ message instead of a ‘push’ message. �e earlier presentation of the fusion
algorithm used the same static input states of the processes to fuse both forms of communica-
tion, so in this sense the push instruction is representative of the communication involved in
the close instruction. Removing the close instruction from the formalisation does not limit
the processes that can be expressed, as �nite streams can be represented by pushing a sentinel
value that represents the end of the stream. However, the in�nite-stream fusion algorithm
does not statically reason about pushed and pulled values, and cannot statically determine
whether an in�nite stream has ‘�nished’. �erefore, the in�nite-stream fusion algorithm may
fail for some processes that use in�nite encodings of �nite-streams, while the �nite-stream
presentation would succeed. In the earlier presentation of fusion, the exit instruction per-
formed no direct communication between the two processes, and the corresponding clause in
the fusion algorithm was straightforward. For processes that operate over in�nite streams, the
exit instruction is not required as processes can just continue to pull from the input stream.
�e algorithm is conceptually the same despite this simpli�cation to use in�nite streams.

�e Coq formalisation also uses a separate update instruction to modify variables in the
local heap, rather than a�aching heap updates to the Next label of every instruction. Perform-
ing this desugaring makes the low-level lemmas easier to prove, but we �nd a�aching the
updates to each instruction makes for an easier exposition. Having a separate update instruc-
tion causes the fusion de�nition to be slightly more complicated, as two output instructions
must be emi�ed when performing a push or pull followed by an update.

�e following datatype de�nes the available instructions in the formalisation:
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Inductive Instruction : Type :=

| Pull : ScalarV → ChanV → Label → Instruction

| Push : ChanV → (Heap → Value) → Label → Instruction

| Drop : ChanV → Label → Instruction

| Update : ScalarV → (Heap → Value) → Label → Instruction

| IfZero : (Heap → Value) → Label → Label → Instruction

| Jump : Label → Instruction.

In the above inductive de�nition, the type ScalarV denotes a scalar variable; ChanV denotes
a channel name to pull from or push to; Label denotes an output label to transfer control to;
Heap denotes a heap that can be addressed by scalar variables and contains scalar values; and
Value denotes a scalar value, which for formalisation purposes are just natural numbers. We
represent expressions as functions in the meta-language using the type (Heap → Value).

Furthermore, the formalisation only implements sequential evaluation for a single process,
rather than non-deterministic evaluation for whole process networks. Instead, we sequentially
evaluate each source process independently, and compare the output values to the ones pro-
duced by sequential evaluation of the fused result process. Figure 4.22 shows the de�nition
of the inductive relation Eval1, which denotes a single step of sequentially evaluating a pro-
cess. Conceptually, the Eval1 relation takes as input a map of collected values for all chan-
nels (Streams), a scalar heap (Heap), and the currently executing label (Label) and instruction
(Instruction) of the process. As output, the relation gives the updated map of channel values,
the updated scalar heap, and the new label at which execution should continue. To model the
sequential evaluation of a single process in isolation, it would be su�cient to design a seman-
tics where values on input streams were given as a separate channel values map. In such a
semantics, the map of channel values is given to the evaluation relation when evaluation starts,
so the entire input stream must be known ahead of time. Such a semantics would complicate
our proofs, as we wish to reason about the sequential evaluation of a process in the context
of other concurrent processes; in addition, input streams may be in�nite. We instead store in-
put and output streams uniformly in the same channel values map, and conceptually treat the
returned channel values map as a record of pull and push interactions with the surrounding
network.

�e EvalPull constructor of Eval1 corresponds to the execution of a pull instruction. In
this case the process wishes to pull a value from the surrounding network, but as our semantics
does not explicitly represent the surrounding network or the input values, we do not know the
exact value that is available on the channel. Instead, we allow the environment to choose the
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Inductive Eval1 : Streams → Heap → Label → Instruction
→ Streams → Heap → Label → Prop :=

| EvalPull (ss : Streams) (h : Heap) (l l' : Label)
(var : ScalarV) (chan : ChanV) (val : Value)

: StreamType chan = Input
→ Eval1 ss h l (Pull var chan l')

(insert ss chan val) (update var val h) l'

| EvalPush (ss : Streams) (h : Heap) (l l' : Label) (chan : ChanV) (f : Heap → Value)
: StreamType chan = Output
→ Eval1 ss h l (Push chan f l')

(insert ss chan (f h)) h l'

| EvalDrop (ss : Streams) (h : Heap) (l l' : Label) (chan : ChanV)
: StreamType chan = Input
→ Eval1 ss h l (Drop chan l')

ss h l'

| EvalUpdate (ss : Streams) (h : Heap) (l l' : Label)
(var : ScalarV) (f : Heap → Value)

: Eval1 ss h l (Update var f l')
ss (update var (f h) h) l'

| EvalIfZ (ss : Streams) (h : Heap) (l lz lnz : Label) (f : Heap → Value)
: Eval1 ss h l (IfZero f lz lnz)

ss h (if Nat.eqb (f h) 0 then lz else lnz)

| EvalJump (ss : Streams) (h : Heap) (l l' : Label)
: Eval1 ss h l (Jump l')

ss h l'

| EvalIgnore (ss : Streams) (h : Heap) (l l' : Label) (instr : Instruction)
(chan : ChanV) (val : Value)

: StreamType chan = Ignore
→ Eval1 ss h l instr

(insert ss chan val) h l.

Figure 4.22: Single-step execution of process in Coq formalisation
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Variable Instructions : Label → Instruction.
Variable Init : Label.

Inductive EvalN : Streams → Heap → Label → Prop :=
| Eval0

: EvalN (fun _ ⇒ []) (fun _ ⇒ 0) Init
| EvalSuc (l l' : Label) (ss ss' : Streams) (h h' : Heap)

: EvalN ss h l
→ Eval1 ss h l (Instructions l) ss' h' l'
→ EvalN ss' h' l'.

Figure 4.23: Multiple-step execution of process in Coq formalisation

pulled value, and then record that this particular value was read from the surrounding network.
When reasoning about a pair of processes to be fused, the value pulled by one process may have
been pushed by the other process. Deferring the choice of the particular value until the value
is pulled, rather than specifying all input values ahead of time, simpli�es the formalisation of
correctness of fusion.

�e EvalPush constructor interacts with the Streams channel value map in a similar way
to the EvalPull constructor, except in this case the pushed value is dictated by the expresion
(f), rather than being an arbitrary value provided by the environment.

�e remaining constructors are quite similar to the rules for advancing processes given
in Section 4.2.1, except for the �nal constructor EvalIgnore. �e EvalIgnore constructor is
similar to the EvalPull constructor, in that it represents communication with the surrounding
network. In this case, the particular channel is not pulled from or pushed to by the process.
When fusing a pair of processes, one process may pull from or push to a channel that the other
ignores; this constructor allows the process that ignores the channel to record these values in
the channel value map, but the process itself cannot observe the values.

Figure 4.23 shows the de�nition of the multiple-step evaluation relation of a process. Con-
structor Eval0 starts evaluation with channel values map consisting of empty lists, an empty
heap, and starting at the initial label (Init). Constructor EvalSuc appends a single step of
evaluation to the end of an existing multiple-step evaluation, using the mapping from label to
instructions (Instructions) to �nd the corresponding instruction to evaluate.

Figure 4.24 shows the de�nition of Program, which is a convenience record type that ties
together all the di�erent parts required to de�ne a program. �e program is parameterised
by the types of labels, channel variables, and scalar variables. �e ChanVEqDec �eld is a predi-
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Record Program (Label : Set) (ChanV : Set) (ScalarV : Set) : Type
:= mkProgram
{ ChanVEqDec : EqDec ChanV
; ScalarVEqDec : EqDec ScalarV
; StreamType : ChanV → StreamTypeT

; Init : Label
; Instructions : Label → Instruction Label ChanV ScalarV

; LabelInvariants : Label → Streams ChanV → Heap ScalarV → Prop
; Invariant0:

LabelInvariants Init (fun _ ⇒ []) (fun _ ⇒ 0)
; InvariantSuc:

forall (l l' : Label) (ss ss' : Streams ChanV)
(h h' : Heap ScalarV),

LabelInvariants l ss h
→ Eval1 ChanVEqDec ScalarVEqDec StreamType

ss h l (Instructions l) ss' h' l'
→ LabelInvariants l' ss' h'

}.

Figure 4.24: Program de�nition in Coq formalisation

cate to check whether two channel variables are equal; this predicate is used when updating
the channel values map during evaluation. Similarly, the ScalarVEqDec �eld is used to update
the scalar heap. �e StreamType �eld describes whether each channel is pulled from (Input),
pushed to (Output), or neither (Ignore). �e Init and Instructions �elds de�ne the initial
label and the mapping from labels to instructions. For reasoning about program evaluations,
the LabelInvariants �eld associates each label with an invariant, which is expressed as a pred-
icate of the evaluation state. �e Invariant0 and InvariantSuc �elds ensure that the invariant
is established and maintained, respectively. �e Invariant0 �eld ensures that the invariant
for the initial label holds for the initial evaluation state. �e InvariantSuc �eld ensures that
whenever the program takes an evaluation step, assuming the invariant for the original label
was satis�ed at the start of the step, the invariant for the result label must be satis�ed by the
updated evaluation state. �us, each label’s invariant serves the purpose of both precondition
for the corresponding instruction, and postcondition for predecessor instructions. �ese two
facts are su�cient to show that all possible evaluations respect the invariants, by performing
induction over EvalN.
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Variable L1 V1 L2 V2 C : Set.
Variable P1 : P.Program L1 C V1.
Variable P2 : P.Program L2 C V2.

Inductive L' :=
| LX (l1 : L1) (l2 : L2) (is1 : InputStates C) (is2 : InputStates C)
| L'INVALID.

Inductive V :=
| V'V1 : V1 → V
| V'V2 : V2 → V
| V'C : C → V.

Figure 4.25: Labels and variables in the fused process in Coq formalisation

�e fusion algorithm from Section 4.3 takes two processes as input, and constructs a new
process by starting from the initial labels and iteratively inserting new instructions into the
mapping from label to instructions. A�er inserting a new instruction into the map, the algo-
rithm proceeds to insert the instructions corresponding to the destination labels as necessary.
�is insertion step is repeated until all destination labels have been searched, or until a fusion
failure is encountered. �is algorithm is terminating, as both input processes have a �nite
number of labels and the set of fused label is �nite, but encoding this repeated insertion step
in Coq requires a non-trivial proof of termination. We sidestep this issue by representing the
mapping from label to instruction as a total function that does not need to be inserted into,
and by deferring the check for fusion failure until evaluation. Figure 4.25 shows the de�nition
of labels and variables in the resulting fused process; fusion is parameterised over the variable
(V1 and V2), label (L1 and L2), and channel (C) types of the two input programs (P1 and P2). �e
label LX denotes a fused label, and contains the labels and input states of each input process.
�e label L'INVALID denotes an invalid process state, and corresponds to fusion failure in the
original algorithm. In the formalisation, fusion always produces a result program, but if the
state L'INVALID is statically reachable then the original fusion algorithm would have failed.
Despite the presence of invalid states, we can still reason about valid evaluations by restrict-
ing our a�ention to evaluations that end in an LX label. �e variable constructors V'V1 and
V'V2 correspond to a process in each of the original input processes, while the variable V'C

corresponds to a bu�er variable, used to temporarily store a single pulled or pushed value on
a channel.
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For the fused result process, we de�ne the following invariant that all evaluations of the
result process must satisfy:

Definition invariant (l : L') (ss : Streams C) (h : Heap V) : Prop :=

match l with

| L'INVALID ⇒ True

| LX l1 l2 is1 is2 ⇒ invariantPX V'V1 P1 P2 is1 l1 ss h

∧ invariantPX V'V2 P2 P1 is2 l2 ss h

end.

In the case that the result process has evaluated to an L'INVALID label, fusion would have
failed, and we do not know anything about the evaluation state that led to this failure. A
process that has reached L'INVALID will always remain at the L'INVALID label. When the result
process has evaluated to an LX label, we use the function invariantPX to show how the current
evaluation state corresponds to the evaluation of each input process separately, as well as how
the two input processes correspond to each other. �e V'V1 and V'V2 arguments to invariantPX

describe how to access each individual input process’ portion of the scalar heap.
Figure 4.26 shows the de�nition of invariantPX, along with some helper functions. �e

originalStreams and function takes the current state of the stream value map according to
the fused result process, and returns the portion of the stream value map that is currently
visible to the original input process. �e Streams type is represented as a function from chan-
nel name to list of stream values, in order of most recently pushed �rst. Usually the two
stream value maps are the same, except in the following case. When one of the input pro-
cesses has just pushed to a channel that the other pulls from, that channel becomes marked as
AvailableToPull in the input states of the pulling process. In this instance, the stream values
map for the result fused process will contain the pushed value, but because the pulling process
has not yet read the value, it is not visible in the stream values map for the pulling process. �e
de�nition of originalStreams removes the most recently pushed element from the stream. �e
originalHeap function computes the subset of the heap containing only the scalar variables
for the given process. As with Streams, the Heap type is represented as a function.

Still in Figure 4.26, the de�nition of invariantPX contains several properties that hold for
each evaluation. Property pOriginal requires that the original input process can be evaluated
to the current label with the corresponding original stream value map and heap. �is prop-
erty corresponds to the de�nition of EvalNOriginal in the statement of overall Soundness from
earlier; the remaining properties are strengthenings of the invariant that are required to show
that pOriginal is maintained. Property pAvailable requires that a�er one process pushes a
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Let originalStreams (is : InputStates C) (ss : Streams C) : Streams C :=
fun c ⇒ match is c with

| AvailableToPull ⇒ tail (ss c)
| HaveValue ⇒ ss c
| NoValue ⇒ ss c
| ReadyToPush ⇒ ss c

end.

Let originalHeap (VA : Set) (VX : VA → V) (h : Heap V) : Heap VA :=
fun v ⇒ h (VX v).

Let invariantPX (LA VA LB VB : Set) (VX : VA → V)
(PA : Program LA C VA) (PB : Program LB C VB) (is : InputStates C)
(l : LA) (ss : Streams C) (h : Heap V) : Prop :=

let pOriginal := EvalN PA (originalStreams is ss) (originalHeap VX h) l

in let pAvailable := forall c, s c = AvailableToPull
→ head (iss c) = Some (h (V'C c))

in let pReady := forall c, s c = ReadyToPush
→ exists f l', Instructions PA l = Push c f l'
∧ h (V'C c) = f (originalHeap VX h)

in let pInput := forall c, StreamType PA c = Input
→ s c = NoValue ∨ s c = AvailableToPull ∨ s c = HaveValue

in let pOutput := forall c, StreamType PA c = Output
→ s c = NoValue ∨ s c = AvailableToPull ∨ s c = ReadyToPush

in let pIgnore := forall c,
StreamType PA c = Ignore ∨ StreamType PB c = Ignore

→ s c = NoValue

in pOriginal ∧ pAvailable ∧ pReady ∧ pInput ∧ pOutput ∧ pIgnore.

Figure 4.26: Fused process invariant de�nition in Coq formalisation
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value to a shared channel, then the corresponding channel bu�er variable contains the same
value. In the fused process, the pull from the shared channel will use the channel bu�er vari-
able instead of reading from the stream, and this ensures that both receive the same value. In
the formalisation, the fused result process pushes to a shared channel in two steps: �rst, the
channel bu�er variable is set to the pushed value, then the value is pushed. Property pReady

joins these two steps together, and applies when the process has updated the channel bu�er
variable but not yet pushed the value. In this case, the next instruction must push the same
value as is currently in the channel bu�er variable. Properties pInput and pOutput restricts the
possible input states, depending on whether the current input process pulls from or pushes
to the channel. Finally, if either of the input processes ignores a channel, it is not required
to track that channel’s input state. Property pIgnore requires that the input state for ignored
channels is always NoValue.

Proving that the invariant is established initially is straightforward, as the channel value
map is empty and the result process’ initial heap contains both source processes’ initial heaps.
To prove that the invariant is maintained for a particular label in the result process, we perform
case distinction on the instruction corresponding to the label, then, as necessary, perform case
distinction on the original source process instructions. With the invariant established and
maintained, we prove the Soundness theorem by performing induction over the evaluation
relation, and showing that all evaluations of the result process respect the invariant. We believe
that this formalisation gives su�cient con�dence in the correctness of the presentation given
earlier, despite the di�erences in formulation.
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E V A L U A T I O N O F P R O C E S S F U S I O N

Fusion is ultimately performed for practical reasons: we want the fused result program to run
faster than the original unfused program. We also need to be sure that the fused program is
not too large, to ensure that compilation and the fusion transform do not consume too much
memory. �is chapter shows runtime benchmark results for process fusion, and analyses the
result size of fused programs.

5.1 B E N C H M A R K S

�e process fusion algorithm described in Chapter 4 is implemented in a library called Folderol1.
Our implementation uses the topology of the entire process network to perform fusion, stat-
ically coordinating between all processes in the network. To fuse the entire process network
at compile-time, Folderol uses Template Haskell, a form of metaprogramming.

Benchmarks are available at https://github.com/amosr/folderol/tree/bench/bench.
As well as the “gold panning” example from Section 2.1, we present one spatial algorithm,
two �le-based benchmarks, and one audio signal processing benchmark. In the benchmarks,
we compare Folderol variously against hand-fused implementations, the array library Vector
(Leshchinskiy, 2008), as well as the Haskell streaming libraries Conduit (Snoyman, 2011), Pipes
(Gonzalez, 2012) and Streaming2 (�ompson, 2015). We restrict our a�ention to Haskell li-
braries to isolate the cost of streaming from language implementation details. �e concepts in
the chosen libraries are applicable to other languages, and we expect other implementations
to show comparable benchmark results. Strymonas (Kiselyov et al., 2017), which has OCaml
and Scala implementations, uses a similar stream representation to Vector, but uses staged
computation to perform fusion. Functional streams for Scala (Chiusano, 2013) uses a similar
representation to Pipes and Conduit.

�e Vector library provides high-performance boxed and unboxed arrays with pull-based
shortcut fusion. It is the de facto standard for array programming in Haskell, and implements

1 https://github.com/amosr/folderol
2 We use small-caps typography to distinguish Streaming the library from streaming the abstract concept.

https://github.com/amosr/folderol/tree/bench/bench
https://github.com/amosr/folderol


120 E VA L UAT I O N O F P R O C E S S F U S I O N

data ConduitT i o m r =
NeedInput (i → ConduitT i o m r) (ConduitT i o m r)
| HaveOutput (ConduitT i o m r) o
| Done r
| ConduitM (m (ConduitT i o m r))
| Leftover (ConduitT i o m r) i

instance Monad m ⇒ Monad (ConduitT i o m)

Listing 5.1: Conduit datatypes

a shortcut fusion system called stream fusion, introduced by Cou�s et al. (2007). Array op-
erations are implemented by converting the input array to a stream, then performing the
corresponding stream operation, and converting back to an array. �e shortcut fusion rule
removes the super�uous conversion when a stream is converted to an intermediate array and
immediately back to a stream. Just as pull streams only support a single consumer, this rule
can only remove intermediate arrays which have a single consumer. If the same intermediate
array is used multiple times, it acts as a fusion barrier, forcing the stream to be manifested
into a real, memory-backed array. We discuss fusion barriers further in Chapter 7. In practice,
Vector provides no guarantees about whether fusion will occur, and the easiest way to tell
whether fusion has occurred is to look at the generated code to count the loops and arrays.
We could benchmark the program to see whether it is “fast enough”, but if we do not have an
optimal baseline to compare against, it is hard to know how fast the program should be. A�er
inspecting the generated code, if we discover that fusion has not occurred, it may be necessary
to rewrite the program and hand-fuse it.

�e �rst two Haskell streaming libraries, Conduit and Pipes, both have limited APIs that
ensure that any computation can be run with bounded bu�ers. �ese streaming libraries do
not naturally support multiple queries: when a stream is shared among multiple consumers,
part of the program must be hand-fused, or somehow rewri�en as a straight-line computation.
�ese libraries also have a monadic interface, which allows the structure of the data�ow graph
to depend on the values. �is expressiveness has a price: if the data�ow graph can change
dynamically, we cannot statically fuse it.

Listing 5.1 shows a simpli�ed version of the core datatype for Conduit. �e ConduitT type
de�nes a stream transformer that consumes elements of type i and produces elements of type
o. �e transformer may perform e�ects in the m monad, and returns a �nal result value of type
r. �e NeedInput constructor pulls from the input and takes two arguments: a function which
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data Stream f m r =
Step (f (Stream f m r))
| Effect (m (Stream f m r))
| Return r

instance (Functor f, Monad m) ⇒ Monad (Stream f m)

data Of a b = a :> b
instance Functor (Of a)

store :: Monad m ⇒
(Stream (Of a) (Stream (Of a) m) r → t) →
Stream (Of a) m r → t

sum :: (Num a, Monad m) ⇒
Stream (Of a) m r → m (Of a r)

Listing 5.2: Streaming library datatypes

takes the input element and returns a new stream transformer, and a stream transformer to
use when the input stream is �nished. �e ConduitM constructor performs a monadic e�ect,
which returns a new stream transformer for the rest of the stream. Because the data struc-
ture describing the remainder of the stream is nested inside a closure that performs a monadic
computation, the compiler may not be able to statically reason about the remainder of the
stream. �e constructors and closures for the remainder of the stream will be allocated at
runtime, instead of being statically optimised away. To reduce this overhead, Conduit also im-
plements a fusion system based on Vector’s stream fusion (Cou�s et al., 2007). In stream fusion,
the stream is decomposed into a static, non-recursive step function and a dynamic state. �e
static, non-recursive step function is simpler to inline and optimise than the recursive struc-
ture. Many of the combinators are implemented in terms of both stream fusion as well as the
Conduit implementation. Rewrite rules are used to replace the Conduit implementation with
the stream fusion implementation where possible. Some Conduit operations, such as monadic
bind, cannot be e�ciently implemented in terms of stream fusion, because the structure of the
stream dynamically depends on the bound value.

�e Pipes library uses a recursive, monadic data structure to represent stream transform-
ers. �is representation is similar to the representation used by Conduit, and involves similar
runtime overhead. Instead of using stream fusion to reduce overhead, Pipes has an extensive
set of rewrite rules to statically optimise particular sequences of operations.
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�e Streaming library is a monadic streaming library, similar to Conduit and Pipes. List-
ing 5.2 shows the core datatypes for Streaming. �e Stream type de�nes a stream producer
parameterised by a functor f, a monad m, and a result type r. �e functor for a stream producer
is o�en instantiated to (Of a), where a is the type of the producer’s stream elements. When
the functor is instantiated to (Of a), the Step constructor for Stream will contain the produced
stream element of type a, as well as the remaining stream. �e Effect constructor, like the
ConduitM constructor in Conduit, performs an e�ect and returns the remaining stream. �e
Return constructor signals the end of the stream, and returns the result r. Streaming can
execute multiple queries by explicitly duplicating streams, similar to polarised streams (Sec-
tion 2.4). To duplicate the stream, the store function takes a computation to perform on the
copy of the stream. �is operation is analogous to the dup_ioi combinator, which duplicates
a pull stream into a push stream and returns a new pull stream; however, the implementation
encodes stream polarity with a monad transformer stack rather than directly using pull and
push streams. �e computation passed to store is a function that takes a Stream representing
the duplicated stream, with the original stream nested inside the monad transformer stack. We
can sum the elements of the duplicated stream while passing through the original elements
like so:

store sum :: Num a ⇒ Stream (Of a) m r → Stream (Of a) m (Of a r)

�e input stream has the result type r, while the modi�ed stream contains the same ele-
ments and has the result type (Of a r), which is e�ectively a pair of the sum and the original
result. By pu�ing the original stream in the duplicated stream’s monad transformer stack,
the original stream’s elements are encoded as e�ects to be performed by the sum computa-
tion, while it pulls from the duplicated stream. Unfortunately, because each stream element
involves constructing the Stream recursive data structure with a stack of monad transformers,
the corresponding runtime allocations and closures are not always statically optimised away.

�e benchmark results presented in this chapter were all run on a MacBook Pro, with a
2GHz Intel Core i7, and 16GB of RAM. �e operating system is OS X El Capitan with Glas-
gow Haskell Compiler (GHC) 8.0.2. To run the benchmarks, we used the Criterion3 library.
Criterion o�ers a fairly reliable way to evaluate runtime performance, as it runs each bench-
mark multiple times to compute the mean runtime, and warns if the variance is too high or
if there are outliers. It can also collect statistics on allocations, which can be a more stable

3 http://hackage.haskell.org/package/criterion

http://hackage.haskell.org/package/criterion
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priceAnalysesFolderol :: (FilePath,FilePath) → IO ((Double,Double), (Double,Double))
priceAnalysesFolderol (fpStock, fpMarket) = do
(pot,(pom,())) ← scalarIO $ λsnkPOT → scalarIO $ λsnkPOM →

$$(fuse $ do
stock ← source [|sourceRecords fpStock |]
market ← source [|sourceRecords fpMarket |]
pot' ← priceOverTime stock
pom' ← priceOverMarket stock market
sink pot' [| snkPOT |]
sink pom' [| snkPOM |])

return (pot,pom)

priceOverTime stock = do
tp ← map [|λs → (daysSinceEpoch (time s), price s) |] stock
Stats.regressionCorrelation tp

priceOverMarket stock market = do
j ← joinBy [|λs m → time s `compare` time m |] stock market
pp ← map [|λ(s,m) → (price s, price m) |] j
Stats.regressionCorrelation pp

Listing 5.3: Folderol implementation of priceAnalyses

performance indicator than runtime, as it is less a�ected by the underlying operating system’s
scheduling decisions.

We have implemented each benchmark program multiple times across the di�erent back-
ends. �ese di�erent implementations generally follow the same structure. We do not show all
the implementations in this chapter, and tend to focus on the Folderol versions. �e remaining
implementations are available in Appendix A.

5.1.1 Gold panning

Our �rst benchmark is the priceAnalyses example from Section 2.1. �is example computes
statistical analyses of a particular stock’s price over time, as well as how the stock compares
to a market index.

Listing 5.3 shows the Folderol implementation of priceAnalyses. �e calls to scalarIO in-
dicate that the query returns two scalar variables that we wish to capture. �e fuse function
converts the process network into executable code. �e dollar-sign syntax around fuse denotes
a Template Haskell splice, which means that the call to fuse is evaluated at compile-time, and
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Figure 5.1: Runtime performance for priceAnalyses queries

returns code to execute at runtime. �e fuse function takes a process network constructed at
compile-time, fuses the network into a single process, and generates code for the resulting pro-
cess. In the call to source, the piped brackets around the argument [|sourceRecords fpStock|]

indicate a Template Haskell quasiquote; this is used to delay execution of code from compile-
time to runtime.

We use the same Folderol implementation to benchmark against concurrent execution of
a Kahn process network. We disable fusion by replacing the call to fuse with a function called
fuseWith, which takes a set of fusion and code generation options. �ese options dictate
whether to perform fusion, whether to automatically insert communication channels between
each process, and if so what chunk size to use for channels. A�er inserting the communication
channels, the concurrent version uses the same code generation backend as the fused version.

For Pipes, which does not naturally support multiple queries, we implement a two-pass
version which computes priceOverTime and priceOverMarket in separate loops over the input.
�e implementation is available in Listing A.1.

For Streaming, we duplicate the stream explicitly to compute priceOverTime as a push
stream. �e implementation is available in Listing A.2.
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Figure 5.1 shows the results of benchmarking the di�erent versions of priceAnalyses over
106 elements. We ran with di�erent sizes of data ranging from 103 to 108 but do not show
these additional executions, as the results for this size are representative of the relationship
between the di�erent implementations. We compare the concurrent execution of Kahn process
networks (KPN) with one, two, four, and eight processors. For the concurrent executions,
we vary the chunk size along the x axis, to try to �nd the best trade-o� between memory
usage and communication overhead. For the sequential implementations — Folderol, Pipes,
and Streaming— the inter-process chunk size does not a�ect execution.

Interpreting the results in Figure 5.1, we see that the fused Folderol implementation is the
fastest. For concurrent execution of the Kahn process network implementation with multiple
processors, a chunk size of one hundred appears to be ideal. For this example with only a few
queries, there is a signi�cant improvement between one and two processors, but li�le further
improvement as more processors are added. With the ideal chunk size, the concurrent execu-
tion of the Kahn process network is 1.5 times faster than the Pipes implementation, and 3.7
times slower than the fused version. �e total CPU time for the concurrent executions is not
shown, but can be roughly estimated using the runtime of the single-CPU execution of the
concurrent process network. If we were to compare total CPU time as an indicator of power
usage, then the concurrent execution of the Kahn process network would use more power than
the sequential versions. �e Folderol version is completely statically fused, and allocates very
few intermediate data structures, while the concurrent Kahn process network is dynamically
scheduled and involves some channel communication overhead. �e Streaming implemen-
tation cannot statically fuse all operations, so allocate more intermediate data structures. �e
Pipes implementation performs some fusion, but also performs two passes over the input, and
must read the �le twice.

5.1.2 �ickhull

�ickhull is a divide-and-conquer spatial algorithm to �nd the smallest convex hull containing
all points. At its core is the filterMax operation which takes a line and an array of points, and
�nds the farthest point above the line, as well as all points above the line.

Listing 5.4 shows the Folderol implementation of filterMax. �e Folderol implementation
starts by constructing a sink for the maximum point to be pushed into (snkMaxim), and a sink
for the vector of points above the line (snkAbove). As we know the output vector of points is
not going to be any longer than the input vector, we use vectorSize as a size hint to specify the
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filterMaxFolderol :: Line → Vector Point → IO (Point, Vector Point)
filterMaxFolderol l ps = do
(maxim,(above,())) ← scalarIO $ λsnkMaxim →

vectorSize ps $ λsnkAbove →
$$(fuse $ do

ins ← source [|sourceOfVector ps |]
annot ← map [|λp → (p, distance p l) |] ins
above ← filter [|λ(_,d) → d > 0 |] annot
above' ← map [|fst |] above
maxim ← maxBy [|compare `on` snd |] annot
sink maxim [|snkMaxim |]
sink above' [|snkAbove |])

return (fst maxim, above)

Listing 5.4: Folderol implementation of filterMax

upper bound of the vector’s size. �e Template Haskell splice calls fuse to convert the process
network into executable code. �e process network starts by converting the input vector pts
to a stream ins. We use source to create an input stream, which takes a Template Haskell
expression denoting how to construct a source at runtime. We then annotate each point of
ins with the distance between each point and the line with map, calling this stream annot. �e
annot stream is �ltered to only those above the line (above), then the annotations thrown away
(above'). �e maximum is computed by comparing the second half of each annotated point —
the distance — and stored in maxim. Finally, maxim is pushed into the scalar output sink, and all
above' points are pushed into the vector output sink.

In the Folderol implementation, the annot stream is used twice. If we rewrite this to use
Vector, as in Listing 5.5, the corresponding annot vector cannot be fused with both of its con-
sumers, and the program requires multiple loops. We call this the ‘shared distances’ version,
as the annot vector containing the distances is made manifest and re-used by the two loops
computing the maximum and the �lter.

Instead of constructing annot as a manifest vector and sharing it among the two consumer
loops, we can also recompute the distances for each consumer. �e recomputed distances
implementation is available in Listing A.5. To recompute the vectors, we modify the shared
version, duplicating the binding for the annot vector to annot1 and annot2. �e maximum now
uses annot1, and �lter uses annot2. �is way, both maps to compute the distance can be fused
into their consumers.
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filterMaxVectorShare l ps
= let annot = map (λp → (p, distance p l)) ps

point = fst
$ maximumBy (compare `on` snd) annot

above = map fst
$ filter ((>0) ◦ snd) annot

in return (point, above)

Listing 5.5: Vector shared distances implementation of �lterMax

filterMaxConduitTwoPass l ps = do
maxim ← runConduit cmaxim
above ← runConduit cabove
return (fst maxim, above)

where
cabove =

sourceVector ps . |
map (λp → (p, distance p l)) . |
filter ((>0) ◦ snd) . |
map fst . |
sinkVectorSize ps

cmaxim =
sourceVector ps . |
map (λp → (p, distance p l)) . |
maximumBy (compare `on` snd)

Listing 5.6: Conduit two-pass implementation of filterMax

In the results below, recomputing the distances is faster and allocates less than the shared
distances version. For this benchmark we used only two-dimensional points, but it is possible
that at higher dimensions the cost of recomputing distances may outweigh the cost of allo-
cation. �e choice to recompute the distances requires intimate knowledge of how shortcut
fusion works and might be surprising to the naive user: duplicating work does not usually
improve performance.

For Conduit, we also have two versions: the �rst uses two passes over the data (Listing 5.6),
while the second is hand-fused into a single pass (Listing 5.7). �e two-pass version de�nes two
‘conduits’, or stream computations: cabove for the �ltered vector, and cmaxim for the maximum.
Computation cabove converts the vector to a conduit with sourceVector, then annotates with
the distances, �lters according to the distances, removes the annotations, and converts back
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filterMaxConduitOnePass l ps = do
r ← MUnbox.unsafeNew (Unbox.length ps)
(a,ix) ← runConduit $ both r
r' ← Unbox.unsafeFreeze $ MUnbox.unsafeSlice 0 ix r
return (a, r')
where
both r =

sourceVector ps . |
map (λp → (p, distance p l)) . |
filterAndMax r 0 (0,0) (-1/0)

filterAndMax !r !ix (!x,!y) !d1 = do
e ← await
case e of
Just (!p2,!d2) → do
let (!p',!d') = if d1 > d2 then ((x,y),d1) else (p2,d2)
case d2 > 0 of
True → do
MUnbox.unsafeWrite r ix p2
filterAndMax r (ix+1) p' d'

False → do
filterAndMax r ix p' d'

Nothing → do
return ((x,y), ix)

Listing 5.7: Conduit one-pass (hand-fused) implementation of filterMax
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filterMaxStreaming l ps = do
(vec,pt :> ()) ← sinkVectorSize ps

$ map fst
$ filter (λ(_,d) → d , 0)
$ store maximumBy (compare `on` snd)
$ map (λp → (p, distance p l))
$ sourceVector ps

return (pt, vec)

Listing 5.8: Streaming implementation of filterMax

to a vector. As with Folderol, we use size hints when converting back to a vector to remove
any overhead with growing and copying the vector. Computation cmaxim also converts the
vector to a conduit, then annotates with the distances, and computes the maximum. �e hand-
fused Conduit version in Listing 5.7 is more complicated as the filterAndMax consumer must
perform both operations at once, and loses some of the abstraction bene�ts from using a high-
level streaming library.

For Pipes, we only have a hand-fused version (Listing A.6), which follows much the same
structure as the Conduit hand-fused version.

Finally, the Streaming version (Listing 5.8) executes in a single pass, with the stream
explicitly duplicated into both consumers. We start by converting the vector to a stream with
sourceVector, and then use map to annotate each point with the distance from the line. To
duplicate the stream we use the store combinator, which takes a computation to perform on
the copy of the stream — in this case computing the maximum with maximumBy. �e original
stream is also passed through, which is �ltered and then the annotations discarded.

Table 5.1 shows the runtimes for �ickhull over 107 points, which corresponds to around
150MB in memory. We present the benchmark results as a table rather than a graph, as a
graph would obscure the comparatively small di�erences between the hand-fused, Vector and
Folderol versions. �e hand-fused version is the fastest, followed by Folderol. �e Folderol
version performs a single loop, but the generated code stores the result vector as a boxed
object, and reboxes the vector for every write to the vector. Our code generation generates
Haskell source code and relies on the Glasgow Haskell Compiler’s constructor specialisation
optimisation (Peyton Jones, 2007) to unbox loop variables. Most loop variables are unboxed by
constructor specialisation, but even when the generated code a�empts to forces specialisation,
constructor specialisation uses heuristics to determine which constructors to remove, and in
this case does not unbox the result vector. In the future, we may be able to improve the
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Runtime (s) Runtime (%) Allocation (b) Allocation (%)
Folderol 0.21s 100% 1.2e9 100%
Hand 0.14s 66% 4.8e8 40%

Vector store 0.40s 190% 1.8e9 150%
recompute 0.34s 161% 8.0e8 66%

Conduit 2-pass 10.0s 4,762% 6.2e10 5,167%
hand 7.9s 3,762% 4.4e10 3,667%

Pipes hand 4.9s 1,876% 3.9e10 3,250%
Streaming 4.4s 2,095% 3.0e10 2,500%

Table 5.1: �ickhull benchmark results

code generation by performing the unboxing ourselves on loop variables that have a statically
known data constructor.

�e Vector versions are somewhat slower than the hand-fused and Folderol versions be-
cause they require two iterations over the data, but they still generate high-quality loops. In-
timate knowledge of shortcut fusion was required to �nd ‘recompute’, the faster of the two
vector benchmarks, and there is no indication in the source program, or from the compiler, that
the two could not be fused together. �e streaming libraries are signi�cantly slower, spending
most of the time allocating closures and forcing thunks. On the plus side, the limited APIs
and linearity constraints for Conduit and Pipes made it more obvious that they would not
be fused into a single loop, but even with partial hand-fusion, are still signi�cantly slower
because the remaining operations were not statically fused. �e Streaming program allows
explicit sharing, and was the simplest of the three streaming libraries, requiring no hand fu-
sion. Surprisingly, the simpler Streaming program is faster than the hand-fused Conduit and
Pipes programs, but is still signi�cantly slower than Folderol.

�ese streaming libraries are not usually used for array computations because of this over-
head. In practice, one tends to ‘chunk’ the data so that each element is an array of multiple
elements: this reduces overhead paid for streaming. �is chunking must be implemented man-
ually and complicates the program further, reducing the level of abstraction the programmer
can work at. Even with chunking, we may reduce the streaming overhead from once per ele-
ment to once per thousand elements, but we can never remove it entirely. With Folderol there
is no streaming overhead to reduce because it is statically fused away.
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Figure 5.2: Dependency graph for audio compressor
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5.1.3 Dynamic range compression

Dynamic range compression is an audio signal processing algorithm to reduce the volume of
loud sounds, leaving quiet sounds unchanged. To implement this, we take an audio signal,
and at each point approximate the signal’s current volume with a rolling average. We pass the
current volume to a transfer function to compute the gain multiplier, which denotes how much
to adjust the volume by. If the volume of the input signal is not above the volume threshold,
the transfer function sets the gain multiplier to one, indicating no change to the input signal. If
the volume is louder than the threshold, the transfer function decreases the volume by se�ing
the gain multiplier to a value below one.

Figure 5.2 shows the dependency graph for the audio compressor. �e input stream is
used twice, once by the level detector subgraph, and again by the gain subgraph. �e level
detector subgraph approximates the signal volume by computing the root mean square with
an exponential moving average. �e gain subgraph uses the output of the level detector to
compute the gain multiplier, and then uses this to adjust the volume of the input signal.

�e Folderol implementation is shown in Listing 5.9. �e stream transformers square, root
and transfer are computed by applying a single function to each stream element. To compute
the moving average, we use postscanl, which is like a fold over the data except it returns the
stream of accumulators rather than just the �nal result. �e di�erence between postscanl and
regular scanl is that the output stream for scanl contains the original zero accumulator for
the fold, which postscanl omits.

�e Vector implementation (Listing A.7) is similar to the Folderol implementation, except it
does not require the Template Haskell fusion directives or explicit conversion between arrays
and streams. Vector’s shortcut fusion is able to fuse this program into a single loop, except the
two occurrences of the input vector mean that the vector will be indexed twice.

Table 5.2 shows the runtimes for the dynamic range compressor over 108 samples, which
corresponds to around 750MB in memory. �e runtime di�erence between the hand-fused
implementation and the Folderol implementation is very slight. �e Vector implementation is
slower because its generated loop indexes the input array twice.

5.1.4 Dynamic range compression with low-pass

Before applying dynamic range compression to an audio signal, we may wish to perform some
pre-processing on it. For this benchmark, we want to apply a low-pass �lter to the input signal.
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compressor :: Vector Double → IO (Vector Double)
compressor vecIns = do
(vecOut,()) ← vectorSize vecIns $ λsnkOut → do

$$(fuse $ do
input ← source [| sourceOfVector vecIns |]
squares ← square input
means ← average squares
roots ← root means
gains ← transfer roots
output ← multiply input gains
sink output [| snkOut |])

return vecOut

−− Stream transformers
square = map [|λx → x ∗ x |]
average = postscanl [|average' |] [|0 |]
root = map [|sqrt |]
transfer = map [|transfer' |]
multiply = zipWith [|(∗) |]

−−Worker functions
average' acc sample
= acc ∗ 0.9 + sample ∗ 0.1

transfer' mean
| mean > 1 = 1 / mean
| otherwise = 1

Listing 5.9: Folderol implementation of compressor

Runtime (s) Runtime (%) Allocation (b) Allocation (%)
Folderol 0.93s 100% 8.0e8 100%
Hand 0.98s 105% 8.0e8 100%

Vector 1.78s 191% 8.0e8 100%

Table 5.2: Compressor benchmark results
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compressorLop :: Vector Double → IO (Vector Double)
compressorLop vecIns = do
(vecOut,()) ← vectorSize vecIns $ λsnkOut → do

$$(fuse $ do
input ← source [|sourceOfVector vecIns |]
lopass ← postscanl [|lop20k |] [|0 |] input
squares ← square lopass
means ← average squares
roots ← root means
gains ← transfer roots
output ← multiply input gains
sink out [|snkOut |])

return vecOut

Listing 5.10: Folderol implementation of compressor with low-pass

Runtime (s) Runtime (%) Allocation (b) Allocation (%)
Folderol 1.16s 100% 8.0e8 100%
Hand 1.18s 101% 8.0e8 100%

Vector 2.21s 190% 1.6e9 200%

Table 5.3: Compressor with low-pass benchmark results

�e Folderol implementation of a dynamic range compressor with a low-pass is shown in
Listing 5.10. �e low-pass �lter is itself a kind of moving average, and is de�ned in much the
same way as the average stream transformer. We use postscanl to create a low-pass �lter to
remove frequencies above 20kHz, and call the result stream lopass. �e lopass stream is then
used as the input to the level detector subgraph and the gain subgraph.

Table 5.3 shows the runtimes for compressor with low-pass. For the Vector implementation
in the previous example, the two occurrences of the input vector meant that the input array
was indexed twice. However, in the modi�ed version with low-pass (Listing A.8), it is the
lopass vector which is used twice, rather than the input vector. Using the lopass vector twice
means that it must be rei�ed into a manifest vector before it can be reused. �e Vector version
then has two loops, as well as an extra manifest array.

In a real-time audio compressor, the input audio signal would be a potentially in�nite
stream, rather than an in-memory vector. Folderol could be extended to operate over in�nite
streams, and our original paper on process fusion (Robinson and Lippmeier, 2017) described
a process fusion algorithm where all streams are in�nite. �e Vector implementation cannot
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append2 :: FilePath → FilePath → FilePath → IO Int
append2 fpIn1 fpIn2 fpOut = do
(count,()) ← scalarIO $ λsnkCount →

$$(fuse $ do
in1 ← source [|sourceLinesOfFile fpIn1 |]
in2 ← source [|sourceLinesOfFile fpIn2 |]
aps ← append in1 in2
count ← fold [|λc _ → c + 1 |] [|0 |] aps

sink count [|snkCount |]
sink aps [|sinkFileOfLines fpOut |])

return count

Listing 5.11: Folderol implementation of append2

Runtime (s) Runtime (%) Allocation (b) Allocation (%)
Folderol 0.29s 100% 8.6e8 100%
Hand 0.29s 100% 8.6e8 100%
Conduit 0.93s 320% 3.3e9 383%
Pipes 0.94s 324% 3.4e9 395%
Streaming 0.57s 196% 2.6e9 302%

Table 5.4: Append2 benchmark results

support an in�nite in-memory vector, but the underlying stream fusion (Cou�s et al., 2007)
could be used to process in�nite streams.

5.1.5 File operations

For the �le benchmarks, we compare against a hand-fused implementation, as well as the three
previously mentioned Haskell streaming libraries: Conduit, Pipes, and Streaming. We do not
compare against Vector.

�e �rst �le benchmark appends two �les while counting the lines. Listing 5.11 shows the
Folderol implementation. In Conduit (Listing A.9) and Pipes (Listing A.10), counting the lines is
implemented as a stream transformer which counts each line before passing it along. Table 5.4
shows the runtimes for appending two text �les each with half a million lines, around 6.5MB
in total. �e three streaming implementations cannot statically remove all of the streaming
overhead.
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part2 :: FilePath → FilePath → FilePath → IO (Int, Int)
part2 fpIn1 fpOut1 fpOut2 = do
(c1,(c2,())) ← scalarIO $ λsnkC1 → scalarIO $ λsnkC2 →

$$(fuse $ do
in1 ← source [|sourceLinesOfFile fpIn1 |]
(o1s,o2s) ← partition [|λl → length l `mod` 2 == 0 |] in1

c1 ← fold [|λc _ → c + 1 |] [|0 |] o1s
c2 ← fold [|λc _ → c + 1 |] [|0 |] o2s

sink c1 [|snkC1 |]
sink c2 [|snkC2 |]
sink o1s [|sinkFileOfLines fpOut1 |]
sink o2s [|sinkFileOfLines fpOut2 |])

return (c1, c2)

Listing 5.12: Folderol implementation of part2

Runtime (s) Runtime (%) Allocation (b) Allocation (%)
Folderol 0.30s 100% 8.6e8 100%
Hand 0.30s 100% 8.6e8 100%
Conduit hand 0.66s 220% 2.4e9 279%
Pipes hand 0.55s 183% 2.0e9 232%
Streaming 1.21s 403% 6.1e9 709%

Table 5.5: Part2 benchmark results

�e second �le benchmark takes a �le and partitions it into two �les: one with even-length
lines, and one with odd-length lines. �e output lines are also counted. Listing 5.12 shows the
Folderol implementation. �e Conduit implementation (Listing 5.13) is partially hand-fused,
with the partition, counting and output implemented as a single recursive function that con-
structs a Conduit. Conduit still incurs some streaming overhead when transferring elements
from the source, which reads from the �le, to the recursive conduit. �e Pipes implementation
(Listing A.13) is similar to the Conduit implementation, and incurs a similar amount of stream-
ing overhead. �e Streaming implementation (Listing 5.14) allows streams to be shared in
a fairly straightforward way and does not require hand-fusion, but is also the slowest in this
benchmark, as the overhead from duplicating the input stream into the monad transformer
stack is not statically removed. Table 5.5 shows the runtimes for partitioning a �le with one
million lines, around 6.5MB.
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part2Conduit in1 out1 out2 =
C.runConduit (sources C.. | sinks)

where
sources = sourceFile in1

sinks = do
h1 ← lift $ IO.openFile out1 IO.WriteMode
h2 ← lift $ IO.openFile out2 IO.WriteMode
ij ← go h1 h2 0 0
lift $ IO.hClose h1
lift $ IO.hClose h2
return ij

go h1 h2 !c1 !c2 = do
e ← C.await
case e of
Nothing → return (c1,c2)
Just v
| prd v → do
lift $ Char8.hPutStrLn h1 v
go h1 h2 (c1 + 1) c2
| otherwise → do
lift $ Char8.hPutStrLn h2 v
go h1 h2 c1 (c2 + 1)

prd l = ByteString.length l `mod` 2 == 0

Listing 5.13: Conduit implementation of part2
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part2Streaming in1 out1 out2 = do
(i S.:> j S.:> _) ← go
return (i,j)
where
go
= into prd out1
$ into (not ◦ prd) out2
$ S.copy
$ sourceFile in1

into p o i
= sinkFile o
$ S.store S.length
$ S.filter p i

prd l = ByteString.length l `mod` 2 == 0

Listing 5.14: Streaming implementation of part2

5.1.6 Partition / append

We now look at an example that cannot be fused into a single process without introducing
unbounded bu�ers or multiple traversals. For this example, the structure of the process net-
work is more important than the details of the worker functions. �e program in Listing 5.15
converts an input vector to a stream, and partitions the stream elements into a stream for the
even-valued elements, and a stream for the odd-valued elements. �e even-valued elements
are halved, while the odd-valued elements are doubled. �e two result streams are then ap-
pended together and converted back to a vector.

If we try to compile partitionAppendFailure with Folderol, we get the compile-time warn-
ing in Listing 5.16. �is warning indicates that the program could not be fused into a single
loop without introducing unbounded bu�ering, and will instead be executed as a partially
fused concurrent process network with unbounded channels. �e warning shows the depen-
dencies between processes in the process network, with each process’ input channels and
output channels. �e Template Haskell implementation does not have access to the variable
names used by the original program, so communication channels are denoted by the place-
holder names C0 to C5. �e input process network shows a line for each source, sink and
process. �e source {sourceOfVector xs} produces the C0 stream, named x0 in the original
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partitionAppendFailure :: Vector Int → IO (Vector Int)
partitionAppendFailure xs = do
(apps,()) ← vectorSize xs $ λsnkApps →

$$(fuse $ do
x0 ← source [|sourceOfVector xs |]
(evens,odds) ← partition [|λi → even i |] x0
evens' ← map [|λi → i `div` 2 |] evens
odds' ← map [|λi → i ∗ 2 |] odds
apps ← append evens' odds'
sink apps [|snkApps |])

return apps

Listing 5.15: Partition / append fusion failure

bench/Bench/PartitionAppend/Folderol.hs:18:8: warning:
Maximum process count exceeded: there are 2 processes after fusion.
Inserting unbounded communication channels between remaining processes.

Input process network (4 processes):
() ->-{sourceOfVector xs}--> C0
C0 ->-----(partition)------> C1 C2
C1 ->--------(map)---------> C3
C2 ->--------(map)---------> C4
C3 C4 ->------(append)--------> C5
C5 ->------{snkApps}-------> ()

Partially fused process network (2 processes):
() ->-{sourceOfVector xs}--> C0
C0 ->-----(partition)------> C1 C2
C1 C2 ->-(map / map / append)-> C5
C5 ->------{snkApps}-------> ()

Listing 5.16: Partition / append fusion failure compile-time warning
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Figure 5.3: Dependency graph for partitionAppendFailure

program. �e partition process consumes the C0 stream and produces the output channels
C1 and C2, named evens and odds respectively in the original program.

�e partially fused process network shows that the append process has been fused with the
two map processes, but could not be fused with the partition process. Some sort of bu�ering
is inevitable for this process network, because append requires all the evens' �rst: all the even-
valued elements need to be read from the input stream x0 before the odd-valued elements can
be read by append. To implement this in a single, sequential, traversal of the input stream, we
would need to read from the input stream x0, and if we see an odd-valued element, we would
need to hold on to it until we were sure there were no even-valued elements le�.

As described in Section 4.3.1, fusion failure for a pair of processes corresponds to a static
approximation of deadlock, when executed concurrently with single-element channel bu�ers.
For a deadlock to occur, two processes must have con�icting requirements on how a stream
is used. Figure 5.3 shows the dependency graph for partitionAppendFailure. �e diamond in
the dependency graph shows that the append process has two di�erent dependencies on the
xs input stream, via the partition and map processes. In this case deadlock occurs because the
two dependencies have con�icting requirements on the input stream, as the append process
only reads the values from the odds' stream once the evens' stream has �nished.

Deadlocks can also occur when two distinct sets of processes have more than one input
stream in common. An example of this kind of deadlock is the append3 program from Sec-
tion 4.5.1, or the append2 program shown in Listing 5.17. In this example, both append pro-
cesses read from both input streams, but the two streams are read from in di�erent orders.
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append2 :: [a] → [a] → ([a],[a])
append2 a b =
let ab = a ++ b

ba = b ++ a
in (ab, ba)

Listing 5.17: List implementation of append2 program

partitionAppend2Source xs = do
(apps,()) ← vectorSize xs $ λsnkApps →

$$(fuse $ do
x0 ← source [| sourceOfVector xs |]
x1 ← source [| sourceOfVector xs |]
evens ← filter [|λi → even i |] x0
odds ← filter [|λi → odd i |] x1
evens' ← map [|λi → i `div` 2 |] evens
odds' ← map [|λi → i ∗ 2 |] odds
apps ← append evens' odds'
sink apps [|snkApps |])

return apps

Listing 5.18: Partition / append with two sources

Deadlocks require a mutual dependency between two sets of processes; as our process net-
works are acyclic, such interdependencies require two sets of processes to share multiple in-
put streams, or to contain a diamond. Fusion always succeeds for network topologies with no
interdependencies. �is class of programs corresponds to those that can be expressed using
the polarised streams from Section 2.4. For topologies that contain interdependencies, fusion
may still succeed, but only when the fusion algorithm can statically determine the absence of
deadlocks, and when the network fusion order heuristic described in Section 4.5.1 chooses the
correct order.

When fusion fails, it may be possible to rewrite the program without introducing un-
bounded bu�ering. In the partitionAppendFailure program, the input stream is backed by
a real vector. We can, in fact, rewrite the program without introducing an unbounded bu�er:
we already have the bu�er. To execute the program, we explicitly introduce another source
to read from the vector and separate the partition process into two filter processes, as in
Listing 5.18. From the perspective of the process network, the two filter processes apply to
di�erent input sources: even though they are backed by the same vector, there is no need to
coordinate the two uses. All of evens' can be read by append, independently of odds'.
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partitionAppend2Loop xs = do
(evens'V,(odds'V,())) ← vectorSize xs $ λsnkEvens' →

vectorSize xs $ λsnkOdds' →
$$(fuse $ do

x0 ← source [|sourceOfVector xs |]
(evens,odds) ← partition [|λi → even i |] x0
evens' ← map [|λi → i `div` 2 |] evens
odds' ← map [|λi → i ∗ 2 |] odds
sink evens' [|snkEvens' |]
sink odds' [|snkOdds' |])

(apps,()) ← vectorSize xs $ λsnkApps →
$$(fuse $ do

evens' ← source [|sourceOfVector evens'V |]
odds' ← source [| sourceOfVector odds'V |]
apps ← append evens' odds'
sink apps [| snkApps |])

return apps

Listing 5.19: Partition / append with two loops

We can implement this program another way, if we are willing to introduce two interme-
diate arrays. In this version we introduce two loops. In the �rst loop, we partition the input
into two intermediate arrays. �en in the second loop, we append the two intermediate arrays.
�is implementation is shown in Listing 5.19.

�e two Vector implementations (Listing A.15) follow the same structure as the two se-
quential Folderol implementations: the two-loop version uses an intermediate array to store
the �ltered arrays in before appending them; the other indexes the input array twice, thus
computing the predicate twice. �e two-loop Vector version uses the partition primitive,
which is itself a hand-fused implementation of two �lters. �e Vector partition cannot fuse
with any consumers and always constructs manifest output vectors. �e fact that partition
constructs a manifest vector does allow an optimisation that Folderol cannot perform: if the
size is known, the output can be �lled at both ends, with the elements that satisfy the predi-
cate �lling the start of the array, and the elements that do not satisfy the predicate �lling from
the back of the array. Once the end of the input is reached, the second half, which was �lled
back-to-front, can be reversed in-place. �e Vector program then splits the array in two before
performing the map operations and appending the results back together.

Table 5.6 shows the runtimes for partitioning and appending an input vector with 107

elements. In the results table, the Vector version with two loops is the fastest, but the di�erence
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Runtime (s) Runtime (%) Allocation (b) Allocation (%)
Folderol 2-source 0.42s 100% 8.0e7 100%

2-loop 0.33s 79% 2.4e8 300%
KPN partially fused 0.53s 126% 3.2e8 400%
(2 CPUs, chunk 103)
KPN unfused 0.82s 195% 5.7e8 713%
(4 CPUs, chunk 103)

Vector 2-source 0.41s 98% 1.6e8 200%
2-loop 0.31s 74% 1.6e8 200%

Table 5.6: PartitionAppend2 benchmark results

between it and Folderol with two loops is fairly small. �e Folderol version with two sources
uses the least memory, as it requires no intermediate arrays. �e two concurrent versions
are partitionAppendFailure, which was partially fused into the two processes shown in the
warning in Listing 5.16, and a version with fusion disabled, which executes as the four original
processes. We executed with the number of processors ranging from one to four, and the
chunk size ranging from 100 to 106; the table shows the execution with the fastest runtime.
Both concurrent versions incur some channel communication overhead for both runtime and
allocation.

�ese results illustrate a trade-o� between memory usage and throughput. Sometimes, we
are willing to sacri�ce lower throughput for lower memory usage, and this decision depends
on the context. By giving a compile-time warning when fusion fails, we are able to maintain
a high level of abstraction, while empowering the author to make these scheduling decisions.

5.2 R E S U L T S I Z E

As with any practical fusion system, we must be careful that the size of the result code does
not become too large when more and more processes are fused together. Figure 5.4 shows the
maximum number of output states in the result when a particular number of processes are
fused together in a pipelined-manner. To produce this graph, we programmatically generated
data�ow networks for all possible pipelined combinations of the map, filter, scan, group and
join combinators, and tried all possible fusion orders consiting of adjacent pairs of processes.
�e join combinator itself has two inputs, so only works at the very start of the pipeline —
we present results for pipelines with and without a join at the start. �e same graph shows
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Figure 5.4: Maximum output process size for fusing all combinations of up to n combinators

the number of states in the result when the various combinations of combinators are fused
in parallel, for example, we might have a map and a filter processing the same input stream.
In both cases, the number of states in the result process grows linearly with the number of
processes. In all combinations, with up to 7 processes there are fewer than 100 states in the
result process.

�e size of the result process is roughly what one would get when inlining the de�nitions
of each of the original source processes. �is is common with other systems based on inlining
and/or template meta-programming, and is not prohibitive.

On the other hand, Figure 5.5 shows the results for a pathological case where the size of the
output program is exponential in the number of input processes. �e source data�ow networks
consists of N join processes, N+1 input streams, and a single output stream. �e output of each
join process is the input of the next, forming a chain of joins. In source notation the network
for N = 3 is (sOut = join sIn1 (join sIn2 (join sIn3 sIn4))).

When fusing two processes, the fusion algorithm essentially compares every state in the
�rst process with every state in the second, computing a cross product. During the fusion
transform, as states in the result process are generated they are added to a �nite map — the
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Figure 5.5: Exponential blowup occurs when spli�ing or chaining join combinators together

instrs �eld of the process de�nition. �e use of the �nite map ensures that identical states
are always combined, but genuinely di�erent states always make it into the result.

In the worst case, fusion of two processes produces O(n ∗m) di�erent states, wheren andm
are the number of states in each. If we assume the two processes have about the same number
of states then this is O(n2). Fusing the next process into this result yields O(n3), so overall the
worst case number of states in the result will be O(nk ), where k is the number of processes
fused.

In the particular case of join, the implementation has two occurrences of the push instruc-
tion. During fusion, the states for the consuming process are inlined at each occurrence of
push. �ese states are legitimately di�erent because at each occurence of push the input chan-
nels of the join process are in di�erent channel states, and these channel states are included in
the overall process state. It may be possible to solve this problem by introducing the concept
of subroutines, which would allow the same set of consumer instructions to be reused by the
di�erent occurences of the push instructions. �e fusion algorithm would be modi�ed to inline
the de�nition of a subroutine when required to coordinate between the two processes. When
coordination is not required, the subroutine can be called as-is. Currently, all instructions are
continuation-passing-style and the processes do not require a call-stack. To ensure subrou-
tines can be executed with a statically bounded call-stack, subroutines must be non-recursive,
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but it may be possible to allow subroutines to perform loops and call other subroutines so long
as there is no mutual recursion.

�e Vector library’s implementation of stream fusion has faced similar problems with expo-
nential blowup, as it relies on the constructor specialisation optimisation (Peyton Jones, 2007)
to generate e�cient code. Constructor specialisation duplicates the body of a function for each
statically known call pa�ern; if there are many similar call pa�erns, parts of the intermediate
code can be duplicated many times. In practice, this is solved by limiting the amount of con-
structor specialisation according to size-based heuristics. �is heuristic is a trade-o� between
the e�ciency and the size of the generated code.

Other compilation methods based on the product of �nite automata, such as those used
by the synchronous language Esterel (Berry, 2000), have faced similar problems related to
exponential blowup of program size. Exponential blowup is more common in Esterel, where a
program reading from two input channels can observe the order that the two inputs may arrive.
Because an Esterel program can, in general, act di�erently depending on the order that two
inputs arrive, all di�erent possible orders must be preserved in the product of two programs.
In contrast, a process in a Kahn process network cannot observe the order in which inputs
arrive, which allows our fusion algorithm the freedom to choose a particular interleaving
without a�ecting the meaning of the fused process, thus resulting in a smaller process. As
we saw earlier in Section 4.5 however, heuristically choosing a particular interleaving can
cause fusion to succeed for a pair of processes, but fail for a larger network when the chosen
interleaving requires more than a single element bu�er in the larger context. �ere is a trade-
o� between faithfully representing all possible interleavings and minimising the size of the
result process. In future work, it may be possible to characterise a subset of non-determinism
that can safely be removed by choosing a particular interleaving, without a�ecting the bu�er
requirements of a program.

As we have contrasted between synchronous languages and Kahn process networks, it is
important to note that although there exists a Kahn network embedding for programs wri�en
in synchronous languages (Caspi and Pouzet, 1996), this embedding encodes the absence of
messages for a given clock cycle by sending a message with an explicit ‘empty’ value. �ese
explicit empty messages allow the processes to observe the absence of messages in a particular
clock cycle, and therefore the order of messages across di�erent clock cycles.

In Esterel, one way the problem of exponential blowup was addressed was by compiling
Esterel programs to synchronous data�ow circuits (Berry, 1992). In the compilation to circuits,
the state of the �nite state machine is encoded as values in the circuits, rather than control
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�ow. �is method of representing the state as values may be applicable here, but making the
program state dynamic may also reduce static reasoning about the boundedness of bu�ers.

Another method in which Esterel addressed the exponential blowup problem was by split-
ting the program into multiple smaller automata (Berry and Gonthier, 1992). We already per-
form a similar ‘spli�ing’ when fusion fails, by falling back to dynamic scheduling of the par-
tially fused processes with unbounded bu�ers, and we could also limit fusion to only processes
below a certain size threshold.

5.3 C O N C L U S I O N

In the benchmarks, we saw that Folderol was always competitive with the hand-fused pro-
gram, and in all but a few cases, faster than the other programs. We believe that these results
are representative of the relationship between Folderol programs and the streaming libraries,
because the streaming libraries perform a restricted form of fusion compared to Folderol. For
array computations there is some extra code required to convert between vectors and streams.
�ere is also some extra wrapping with Template Haskell splices and quasiquotes, but this is
fairly minor, and the required changes are more or less mechanical and type-driven.

Another bene�t, aside from performance, is not having to inspect the compiler’s interme-
diate representation or generated code to know whether whether fusion has worked or failed.
If fusion succeeds, we know it has succeeded. If fusion fails, we are told which parts of the
process network were able to be fused, and which parts were not. In our examples, these
explicit fusion failures make it signi�cantly easier to track down performance issues due to
non-fusion. Further experience using Folderol is required to determine whether these failure
diagnostics remain readable for practical-sized programs. If these failure diagnostics prove to
be unwieldy, another option may be static analysis of fusibility; however, to be completely
accurate, such a static analysis would require knowledge of the internal state machine of each
process. Such an analysis may be just as complex as the fusion algorithm itself.
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C H A P T E R 6

R E L A T E D W O R K F O R P R O C E S S F U S I O N

�is chapter discusses related work on streaming and fusion. Some of these points have been
touched on previously; we now expand upon them.

6.1 F U S I O N A N D S T R E A M S F O R F U N C T I O N A L P R O G R A M S

�is thesis aims to address the limitations of combinator-based stream fusion systems to ex-
ecute multiple queries concurrently. As explained in Chapter 2, neither pull-based nor push-
based streams are su�cient to execute multiple queries that read from multiple inputs. To
execute multiple queries, we need to be able to share streams among multiple consumers, a
feature that push streams support, but pull streams do not. However, for queries containing
combinators with multiple inputs such as zip and join, we can use pull streams, but not push
streams.

�e listlessness transform, an early form of fusion described by Wadler (1984), can exe-
cute multiple queries concurrently under some circumstances; however, the transform is not
guaranteed to terminate, and is known to diverge on relatively simple programs (Caspi and
Pouzet, 1996). Deforestation (Wadler, 1990), an extension of listlessness to support arbitrary
recursive data types, addressed the problem of divergence by requiring the program to use
each input data structure only once. �is linearity constraint equates to disallowing sharing
of streams. �e listlessness transform diverges when the transform a�empts to generate an
in�nite program. In process fusion, our input processes have a �nite number of instructions,
and the result process generated by our fusion algorithm is guaranteed to have a �nite number
of instructions.

Shortcut fusion is an a�ractive idea, as it allows fusion systems to be speci�ed by a single
rewrite rule. Shortcut fusion relies on local inlining, which can duplicate work when a def-
inition is inlined into multiple use-sites. To avoid duplication of work, the Glasgow Haskell
Compiler does not perform local inlining for multiple use-sites (Jones and Santos, 1998). �is
single use-site restriction is similar to the single consumer restriction of pull streams, and most
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shortcut fusion systems are pull-based. Push-based shortcut fusion systems do exist (Gill et al.,
1993), but support neither zip nor unzip (Svenningsson, 2002; Lippmeier et al., 2013). We dis-
cussed the Vector library’s use of stream fusion shortcut fusion system (Cou�s et al., 2007)
earlier, in Chapter 5.

Recent work on stream fusion by Kiselyov et al. (2017) uses staged computation in a pull-
based system to ensure all combinators are inlined, but when streams are used multiple times
this causes excessive inlining, which duplicates work. For e�ectful inputs such as reading from
the network, duplicating work changes the semantics.

Our previous work on data �ow fusion (Lippmeier et al., 2013) is neither pull-based nor
push-based, and supports stream sharing and combinators with multiple inputs. It supports
standard combinators such as map, filter and fold, and converts each stream to a series
with explicit rate types, similar to the clock types of Lucid Synchrone (Benveniste et al., 2003).
�ese rate types ensure that well-typed programs can be fused without introducing unbounded
bu�ers. Unfusable programs trigger a compile-time error. However, data �ow fusion only
supports a limited set of combinators, and adding more combinators requires changing the
fusion system itself.

One way to address the di�erence between pull and push streams is to explicitly support
both separately using the polarised streams we saw in Section 2.4, as described by Bernardy
and Svenningsson (2015) and Lippmeier et al. (2016). Both systems rely on stream bindings
being used linearly to ensure correctness, including boundedness of bu�ers. �ese systems
require manual polarity analysis of the entire dependency graph, and require complex control
�ow because of the switching between pulling and pushing.

Streaming IO libraries have blossomed in the Haskell ecosystem, generally based on It-
eratees (Kiselyov, 2012). Libraries such as Conduit (Snoyman, 2011), Enumerator (Millikin
and Vorozhtsov, 2011), Machines (Kme� et al., 2012), Pipes (Gonzalez, 2012) and Stream-
ing (�ompson, 2015) are all designed to write stream computations with bounded bu�ers.
�ese libraries all provide expressive monadic interfaces, which allow the structure of the
data�ow graph to depend on the values. Because the data�ow graph can change dynamically,
the streaming overhead cannot always be removed statically. Pipes performs local simpli�ca-
tions using rewrite rules to remove some of this overhead, while Conduit implements many
of its operations in terms of stream fusion (Cou�s et al., 2007). Some overhead remains, and
programs tend to be wri�en over chunks of data to o�set the streaming overhead. For the
most part these libraries support only straight-line computations with limited branching, while
Streaming supports explicit duplication in a similar way to polarised streams. We compared
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the runtime performance of some of these libraries earlier, in Chapter 5. In our comparison,
these libraries involved signi�cantly more overhead than our statically fused process network
implementation.

�e bene�ts of fusion have been known about for a long time, since at least the 1970s.
Jackson Structured Programming (Jackson, 1975, 2002) is a design methodology where the
structure of a program is derived using the structure of the input �les to process. Jackson
employs a method called “program inversion” that performs a similar role to fusion, by remov-
ing intermediate results. �is method is similar to converting a pull computation into a push
computation. While these methods were generally performed by hand, the concept is similar
to mechanised fusion.

6.2 T U P L I N G

Tupling combines multiple traversals over a data structure into a single traversal. Tupling is
more general than stream fusion: it supports simplifying multiple traversals of trees and other
data structures, rather than just streams. Two types of tupling are fold/unfold tupling and
hylomorphism-based tupling.

Fold/unfold tupling, such as Chiba et al. (2010), works by repeatedly unfolding or inlining a
de�nition into its use site, performing some local rewrite-based optimisations, then re-folding
the de�nition. �e unfolding may expose some simpli�cation opportunities, which the local
rewrite rules simplify away. However, because the de�nitions to be unfolded are recursive, sig-
ni�cant e�ort must be taken to ensure only �nite unfoldings are generated, or risk divergence;
for this reason, Hu et al. (1997) declare fold/unfold tupling to be impractical.

Hylomorphism-based tupling, such as Hu et al. (1996a), works by expressing traversals
of the data structure as a hylomorphism. A hylomorphism describes how to generate some
intermediate structure based on the input structure, as well as describing how to fold over the
intermediate structure to compute the result. �e hylomorphism allows us to compute the
result without generating the intermediate structure in full. If two traversals of an input data
structure can be expressed as folds over the same intermediate structure, both traversals can
be computed together. Tupling algorithms a�empt to automatically derive a hylomorphism
for a given input data structure and traversal function, but these algorithms only work for
a limited set of functions. �e algorithm in Launchbury and Sheard (1995) is not total and
cannot fuse a zip combinator with both of its consumers. �e language in Hu et al. (1996b)
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is restricted to ensure totality of the algorithm, but cannot express the data-dependent access
pa�ern of the join combinator described in Section 2.2.

6.3 N E U M A N N P U S H M O D E L

�e push streams described in Chapter 2 are di�erent from the push model used for database
execution, as introduced in Neumann (2011). In an a�empt to avoid confusion, we call this
the Neumann push model. In the Neumann push model, a stream producer is represented as a
continuation which takes a sink, or push function, to push values into:

data PushModel a = PushModel ((a → IO ()) → IO ())

�e consumer provides a sink by calling the continuation, then the producer repeatedly
pushes all its values to the provided sink. In this model, the consumer tells the producer when
to start producing the entire stream: this is in contrast with pull streams, where the consumer
asks for a single element at a time, and push streams, where the producer provides a single
element at a time. Neumann (2011) originally claimed that the Neumann push model was
inherently more e�cient than the pull model, but this claim used a comparison between a
compiled Neumann push model and an un-optimised pull model (Shaikhha et al., 2018).

�e control-�ow for the Neumann push model is the same as that of push arrays, as de-
scribed in Claessen et al. (2012) and Svensson and Svenningsson (2014). Here, push arrays are
used as a code generation technique, with the main advantage of generating branchless code
to append two arrays. �e branchless version of append executes as two loops, one to read
from each array, rather than one loop with a conditional branch inside to choose which input
array to read from.

�e control-�ow is also the same as push-based shortcut fusion (Gill et al., 1993), as the con-
sumer initiates the production loop. Just as push-based shortcut fusion supports neither zip
nor unzip (Svenningsson, 2002), the Neumann push model does not support combinators with
multiple inputs except append; nor does it support executing multiple queries concurrently.

Biboudis (2017) describes the advantage of this model when targeting the Java just-in-time
(JIT) compiler, as it allows the producer to be implemented as a simple for-loop repeatedly
calling the consumer function. Because the consumer function is called many times, the JIT
optimiser is more likely to inline the consumer.
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6.4 S Y N C H R O N I S E D P R O D U C T A N D P R O C E S S C A L C U L I

In relation to process calculi, synchronised product has been suggested as a method for fusing
Kahn process networks together (Fradet and Ha, 2004), but there is no evidence that this has
been implemented or evaluated. �e synchronised product of two processes allows either
process to take independent or local steps at any time, but shared actions, such as when both
processes communicate on the same channel, must be taken in both processes at the same
time. �e synchronised product operator is much simpler than our fusion algorithm, but is
also much stricter. When two processes share multiple channels, synchronised product will
fail unless both processes read the channels in exactly the same order. Consider the following
list program, which we interpret as a process network with two zip processes:

zip2 :: [x] → [y] → ([(x,y)], [(y,x)])

zip2 xs ys =

let xys = zip xs ys

yxs = zip ys xs

in (xys, yxs)

Here, the two zip processes read from xs and ys in di�erent orders. If we try to compute
the synchronised product of these two processes, neither process can take a step because they
are both waiting on the other process. Our system can fuse these two processes together. Our
system can be seen as an extension of synchronised product that allows some leeway in when
processes must take shared steps: the two processes do not have to take shared steps at the
same time, but if one process lags behind the other, the lagging process must catch up before
the leading process gets too far ahead.

In future work, it may be possible to simplify our fusion system by preprocessing input
processes to automatically insert some leeway for shared channels, before using synchronised
product for fusion. We believe that this leeway can, in fact, be inserted using synchronised
product itself, but our experiments in this direction have been limited.

Like synchronised product and our process fusion, �lter fusion (Proebsting and Wa�erson,
1996) also statically interleaves the code of producer and consumer processes. In �lter fusion,
each process can have at most a single input and a single output channel; common operators
like zip, unzip, append, partition and so on are not supported. Channels cannot be shared
among multiple consumers. Given an adjacent producer and consumer pair, �lter fusion alter-
nately assigns control to the code of each. When the consumer needs input, control is passed
to the producer; when the producer produces its value, control is passed back to the consumer.
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�is simple scheduling algorithm works only for straight line pipelines of processes. Both
synchronised product and process fusion provide a �ner-grained interleaving of code, which
is necessary to support combinators with multiple input streams and multiple output streams.

6.5 S Y N C H R O N O U S L A N G UA G E S

Synchronous languages such as Lustre (Halbwachs et al., 1991), Lucy-n (Mandel et al., 2010)
and SIGNAL (Le Guernic et al., 2003) all use some form of clock calculus and causality analysis
to ensure that programs can be statically scheduled with bounded bu�ers. �ese languages
describe passive processes where values are fed in to streams from outside environments, such
as data coming from sensors. In this case, the passive process has no control over the rate of
input coming in, and if they support multiple input streams, they must accept values from them
in any order. In contrast, the processes we describe are active processes that have control over
the input that is coming in. Active control is necessary for combinators such as the streaming
join operator, which must choose which input to pull from on every iteration. We discussed
the relationship between synchronous languages and Icicle earlier, in Section 3.5.

6.6 S Y N C H R O N O U S D ATA F L O W

Synchronous data�ow (not to be confused with synchronous languages above) is a data�ow
graph model of computation where each data�ow actor has constant, statically known input
and output rates. �e main advantage of synchronous data�ow is that it is simple enough for
static scheduling to be decidable, but this simplicity comes at a cost of expressivity. StreamIt (�ies
et al., 2002) uses synchronous data�ow for scheduling when possible, otherwise falling back
to dynamic scheduling (Soulé et al., 2013). Boolean data�ow and integer data�ow (Buck and
Lee, 1993; Buck, 1994) extend synchronous data�ow with boolean and integer valued con-
trol ports, and a�empt to recover the structure of ifs and loops from select and switch ac-
tors. �ese systems allow some dynamic structures to be scheduled statically, but are very
rigid and only support limited control �ow structures: it is unclear how streaming join or
append could be scheduled by this system. Finite state machine-based scenario aware data�ow
(FSM-SADF) (Stuijk et al., 2011; Van Kampenhout et al., 2015) is quite expressive compared to
boolean and integer data�ow, while still ensuring static scheduling. A �nite state machine is
constructed, where each node of the FSM denotes its own synchronous data�ow graph. �e
FSM transitions from one data�ow graph to another based on control outputs of the currently
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executing data�ow graph. For example, a �lter is represented with two nodes in the FSM. �e
data�ow graph for the initial state executes the predicate, and the value of the predicate is
used to determine which transition the FSM takes: either the predicate is false and the FSM
stays where it is, or the predicate is true and moves to the next state. �e data�ow graph for
the next state emits the value, and moves back to the �rst state. FSM-SADF does appear to be
able to express value-dependent operations such as join, but lacks the composability — and
familiarity — of combinators.

Marked graphs, which are a restricted form of Petri nets, are related to synchronised
data�ow (Johnsonbaugh and Murata, 1982). Petri nets are directed graphs where the nodes
are classi�ed as either a place, which acts as a bu�er for storing values, or a transition, which
transfers values from the transition’s input places to their output places. Each transition can
have any number of input places and any number of output places, and a transition can exe-
cute when all input places have stored values. In general Petri nets, each place can have any
number of input transitions and any number of output transitions; in marked graphs, places
are restricted to have exactly one input and one output. Marked graphs are equivalent to
homogenous synchronised data�ow, where each node has an input and output rate of one
(Bouakaz, 2013); as such, marked graphs cannot express data-dependent operations such as
filter, append and join.

6.7 S U M M A R Y

Table 6.1 on the next page shows a summary of the features of some of the streaming models
we have discussed. We limit the comparison to the more recent and closely related work. �e
table displays di�erent features supported by each streaming model. �e �rst four features
denote whether particular operators are supported or can be implemented, and whether new
operators can be de�ned without changes to the model or fusion algorithm. �e second-last
feature denotes whether a stream can be shared among multiple consumers, as required to
execute multiple queries concurrently. �e last feature gives a rough indication of whether
streaming overhead is removed statically, although this cannot be precisely summarised as a
boolean in all cases. Where support for a feature is ambiguous or requires clari�cation, we
denote the feature with an exclamation mark (!) and include an explanatory note.
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Operators Multiple Static
Append Zip Join User def. consumers fusion

Kahn process networks X X X X X Xc4

Pull streams X X X X × X
Cou�s et al. (2007)
Kiselyov et al. (2017)

Push streams !ap × × X X X

Polarised streams X X X X !pm X
Bernardy and Svenningsson (2015)

Neumann push model X × × X × X
Biboudis (2017)

Data �ow fusion X X × × X X
Lippmeier et al. (2013)

Iteratees X X X X !im !if

Kiselyov (2012)
Synchronous languages × X × X X X

Mandel et al. (2010)

c4 Kahn process networks can be statically fused with process fusion (Chapter 4)

ap Push streams can be appended together using a non-deterministic merge operator, if the
push order can be externally controlled (Section 2.3)

pm Polarised streams can be used to distribute elements among multiple consumers, a�er
performing manual analysis of stream polarities (Section 2.4)

im Iteratees-style library Streaming (�ompson, 2015) supports multiple consumers similar
to polarised streams by encoding push streams as an e�ect in a monad transformer stack
(Chapter 5)

if Iteratees-style libraries Conduit (Snoyman, 2011) and Pipes (Gonzalez, 2012) both use
rewrite rules to reduce overhead; Conduit also uses a Stream fusion representation
where possible (Chapter 5)

Table 6.1: Comparison of features supported by di�erent streaming models
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C L U S T E R I N G F O R A R R A Y - B A C K E D S T R E A M S

�is chapter presents a clustering algorithm for scheduling array programs, where the pro-
grams may perform multiple passes over input or intermediate arrays. �is work was �rst
published as Robinson et al. (2014).

In the streaming models we have seen so far, all streams are ephemeral: once the elements
have been read, they cannot be recovered unless they are explicitly materialized into bu�ers.
Input streams such as those that read from a network socket are ephemeral, but arrays stored
in memory or in secondary storage can be re-read any number of times. For array computa-
tions, intermediate and output arrays can be stored and re-read as well. Array computations
that perform multiple passes over input or intermediate arrays can be executed as multiple
streaming programs. We execute each pass as its own streaming process network, fused by
the process fusion algorithm from Chapter 4, with the input streams being read from arrays,
and the output streams wri�en to arrays. For a given array computation, we perform clus-
tering to determine how many passes to perform, and how to schedule the individual array
operations that comprise the array computation among the di�erent passes. �ere are gener-
ally many possible clusterings, and the choice of clustering can a�ect runtime performance.
To minimise the time spent reading and re-reading the data, we would like to use a clustering
with as few as possible array traversals and intermediate arrays. We use integer linear pro-
gramming (ILP), a mathematical optimisation technique, to �nd the best clustering according
to our cost model.

�e contributions of this chapter are:

• We identify an opportunity for improvement over existing imperative clustering algo-
rithms, which do not allow size-changing operators such as filter to be assigned to the
same cluster as operations that consume the output array (Section 7.1);

• We extend the clustering algorithm of Megiddo and Sarkar (1997) with support for size-
changing operators. In our system, size-changing operators can be assigned to the same
cluster as operations that process their input and output arrays (Section 7.4);
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• We present a simpli�cation to constraint generation that is also applicable to some ILP
formulations such as Megiddo’s: constraints between two nodes need not be generated
if there is a fusion-preventing path between the two (Section 7.4.5);

• Our constraint system encodes the cost model as a total ordering on the cost of cluster-
ings, expressed using weights on the integer linear program. For example, we encode
that memory tra�c is more expensive than the overhead of performing a separate pass,
so given a choice between the two, memory tra�c will be reduced (Section 7.4.4);

• We present benchmarks of our algorithm applied to several common programming pat-
terns. Our algorithm is complete and �nds the optimal clustering for the chosen cost
model, which yields good results in practice. A cost model which maps exactly to pro-
gram runtime performance is infeasible in general (Section 7.5).

Our implementation is available at https://github.com/amosr/clustering.

7.1 C L U S T E R I N G W I T H F I L T E R S

To see the e�ect of clustering, consider the following array program:

normalize2 :: Array Int → (Array Int, Array Int)

normalize2 xs

= let sum1 = fold (+) 0 xs

gts = filter (> 0) xs

sum2 = fold (+) 0 gts

ys1 = map (/ sum1) xs

ys2 = map (/ sum2) xs

in (ys1, ys2)

�e normalize2 function computes two sums: one of all the elements of xs, the other of
only elements greater than zero. �e two maps then divide each element in the input xs by sum1

and sum2, respectively. Since we need to fully evalute the sums before we can start to execute
either map, we need at least two separate passes over the input. �ese folds are examples
of fusion-preventing dependencies, as the fold operator must consume its entire input stream
before it can produce its result, and this result is needed before the next stream operation can
begin. A fusion-preventing dependency between two array combinators means that the two
combinators must be assigned to di�erent clusters.

https://github.com/amosr/clustering


7.1 C L U S T E R I N G W I T H F I L T E R S 159

gts

sum2

fold

map map

filter

xs

ys2ys1

sum1

fold

xs

ys2ys1

gts

sum2

fold

map map

filter

sum1

fold

xs

ys2ys1

gts

sum2

fold

map map

filter

sum1

fold

gtsgts

Figure 7.1: Clusterings for normalize2: with pull streams; our system; best imperative system

Figure 7.1 shows three cluster diagrams for normalize2, with each clustering produced by
a di�erent clustering algorithm. A cluster diagram is an extended version of the dependency
graphs we have already seen; we explain the details in Section 7.2. �e le�most diagram
shows how we have to break this program up to execute each part, assuming we use the pull
stream model from Section 2.2. With pull streams we cannot compute the sums or the maps
concurrently, so we end up with four loops, denoted by do�ed lines in the diagram; only the
�lter operation is combined with the subsequent fold. If we wrote this program to use stream
fusion (Cou�s et al., 2007), which is a form of pull-based shortcut fusion, we would end up
with the same clustering.

�e rightmost diagram in Figure 7.1 shows the clustering determined by the best existing
ILP approach for imperative array-based loop fusion. To obtain this clustering, we �rst im-
plemented each combinator as a separate imperative loop, shown in Listing 7.1. Imperative
clustering algorithms, such as Megiddo and Sarkar (1997), only cluster together loops of the
same iteration size. In the imperative code, the loop that performs the fold over gts has an
iteration size of gts_length, while all the other loops have an iteration size of xs_length. �e
�nal value of gts_length is not known until the loop that performs the �lter completes, so the
imperative program has an additional fusion-preventing dependency between the loop that
performs the �lter and the loop that performs the fold over gts, as well as the two loops hav-
ing di�erent iteration sizes. �e low-level imperative details obscure the high-level meaning
of the program, and complicate fusing the �lter operation with the subsequent fold.
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void normalize2(int* xs, size_t xs_length, int* out_ys1, int* out_ys2)
{

/ / sum1 = fold (+) 0 xs
int sum1 = 0;
for (size_t i = 0; i != xs_length; ++i) {

sum1 += xs[i];
}

/ / gts = �lter (> 0) xs
int* gts = malloc(sizeof(int) * xs_length);
size_t gts_length = 0;
for (size_t i = 0; i != xs_length; ++i) {

if (xs[i] > 0) {
gts[gts_length] = xs[i];
gts_length += 1;

}
}

/ / sum2 = fold (+) 0 gts
int sum2 = 0;
for (size_t i = 0; i != gts_length; ++i) {

sum2 += gts[i];
}
free(gts);

/ / ys1 = map (/ sum1) xs
for (size_t i = 0; i != xs_length; ++i) {

out_ys1[i] = xs[i] / sum1;
}

/ / ys2 = map (/ sum2) xs
for (size_t i = 0; i != xs_length; ++i) {

out_ys2[i] = xs[i] / sum2;
}

}

Listing 7.1: Unfused imperative implementation of normalize2
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Our approach, shown in the middle of Figure 7.1, produces the optimal clustering in this
case: one loop for the �lter and folds, another for the maps. For this example, we could execute
each cluster as either push streams (Section 2.3) or as a process network fused by process fusion
(Chapter 4). In general, a single cluster produced by our algorithm may contain combinators
with multiple inputs as well as multiple outputs, so we execute each cluster as a fused process
network.

7.2 C O M B I N AT O R N O R M A L F O R M

To perform clustering on an input program, the program is expressed in combinator normal
form (CNF), which is a textual description of the dependency graph. �e grammar for CNF is
given in Figure 7.2. Syntactically, a CNF program is a restricted Haskell function de�nition
consisting of one or more let-bound array operations.

�e normalize2 example from Section 7.1 is already in CNF; its corresponding cluster dia-
grams are shown in Figure 7.1. Our cluster diagrams are similar to Loop Dependence Graphs
(LDGs) from related work in imperative array fusion (Gao et al., 1992). We name edges a�er the
corresponding variable from the CNF form, and edges which are fusion preventing are drawn
with a dash through them (as per the edge labeled sum1 in Figure 7.1). In cluster diagrams, as
with dependency graphs, we tend to elide the worker functions of combinators when they are
not important to the discussion — so we don’t show the (+) operator on each use of fold.

Clusters of operators, which are to be fused into a single pass by process fusion, are in-
dicated by do�ed lines, and we highlight materialized arrays by drawing them in boxes. In
Figure 7.1, the variables xs, ys1 and ys2 are always in boxes, as these are the material input
and output arrays of the program. In the rightmost cluster diagram, gts has also been materi-
alized because in this version, the producing and consuming operators (filter and fold) have
not been fused together. In the grammar given in Figure 7.2, the bindings have been split into
those that produce scalar values (sbind), and those that produce array values (abind). In the
cluster diagrams of Figure 7.1, scalar values are represented by open arrowheads, and array
values are represented by closed arrowheads.

Most of our array combinators are standard. Although not part of the grammar, we give
the type of each combinator at the bo�om of Figure 7.2. �e mapn combinator takes a worker
function, n arrays of the same length, and applies the worker function to all elements at the
same index. As such, it is similar to Haskell’s zipWith, with an added length restriction on the
argument arrays. �e generate combinator takes an array length and a worker function, and
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scalar → (scalar variable)
array → (array variable)
f → (worker function)
fun → f scalar . . .

bind ::= scalar = sbind
| array = abind
| scalar . . . , array . . .= external scalar . . . array . . .

sbind ::= fold fun array

abind ::= mapn fun arrayn | filter fun array
| generate scalar fun | gather array array
| cross array array

program ::= f scalar . . . array . . . =
let bind . . .
in (scalar . . . , array . . .)

fold :: (a → a → a) → Array a → a
mapn :: ({ai →} i ←1...n b) → {Array ai →}

i ←1...n Array b
filter :: (a → Bool) → Array a → Array a
generate :: Nat→ (Nat→ a) → Array a
gather :: Array a → Array Nat→ Array a
cross :: Array a → Array b → Array (a,b)

Figure 7.2: Combinator normal form
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creates a new array by applying the worker to each index. �e gather combinator takes an ar-
ray of elements, an array of indices, and produces the array of elements that are located at each
index. In Haskell, gather would be implemented as (gather arr ixs = map (index arr) ixs).
�e cross combinator returns the cartesian product of two arrays.

�e exact form of the worker functions is le� unspeci�ed. We assume that workers are pure,
can at least compute arithmetic functions of their scalar arguments, and index into arrays in
the environment. We also assume that each CNF program considered for fusion is embedded in
a larger host program which handles �le IO and the like. Workers are additionally restricted so
they can only directly reference the scalar variables bound by the local CNF program, though
they may reference array variables bound by the host program. All access to locally bound
array variables is via the formal parameters of array combinators, which ensures that all data
dependencies we need to consider for fusion are explicit in the dependency graph.

�e external binding invokes a host library function that can produce and consume arrays,
but cannot be fused with other combinators. All arrays passed to and returned from host
functions are fully materialised. External bindings are explicit fusion barriers, which force
arrays and scalars to be fully computed before continuing.

Finally, note that filter is only one example of a size-changing operator. We can han-
dle other size-changing operators such as slice in our framework, but we stick with simple
�ltering to aid the discussion. We discuss other combinators in Section 7.7.

7.3 S I Z E I N F E R E N C E

�e array operations in a cluster are fused together into a loop with a speci�c number of
iterations. Array operations that process di�erent sized arrays cannot usually be assigned to
the same cluster, because they require di�erent sized loops. Consumers of arrays produced
by size-changing operations can be assigned to the same cluster as operations that process
di�erent sized arrays, but only in speci�c circumstances, which we shall see in Section 7.3.6.
Before performing clustering, we need to infer the relative sizes of each array in the program,
as the sizes determine the relative loop sizes of each array operation, and whether they can
be assigned to the same cluster. We use a simple constraint-based inference algorithm. Size
inference has been previously described in the context of array fusion by Cha�erjee et al.
(1991). In constrast to our algorithm, Cha�erjee et al. (1991) does not support size-changing
functions such as �lter.
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Size Type τ ::= k (size variable)
| τ × τ (cross product)

Size Constraint C ::= true (trivially true)
| k = τ (equality constraint)
| C ∧C (conjunction)

Size Scheme σ ::= ∀k . ∃k . (x : τ ) → (x : τ )

Figure 7.3: Sizes, constraints and schemes

Although our constraint-based formulation of size inference is reminiscent of type infer-
ence for HM(X) (Odersky et al., 1999), there are important di�erences. Firstly, our type schemes
include existential quanti�ers, which express the fact that the sizes of arrays produced by �l-
ter operations are statically unknown, in general. �e output size of generate is also statically
unknown, as the result size is data-dependent and is not available until runtime. HM(X) style
type inferences use the ∃ quanti�er to bind local type variables in constraints, and existential
quanti�ers do not appear in type schemes. Secondly, our types are �rst-order only, as program
graphs cannot take other program graphs as arguments. Provided we generate the constraints
in the correct form, solving them is straightforward.

Size inference cannot statically infer array sizes for all programs. �e mapn combinator
requires all input arrays to be the same size, and returns an output array of the same size.
Compared to zipWith, which returns a statically unknown size, this extra restriction gives size
inference more information about the size of the output array, which in turn may allow more
array operations to be assigned to the same cluster. If we cannot statically determine that all
input arrays given to mapn are the same size, size inference will fail: the program may still be
compiled, but fusion is not performed.

7.3.1 Size types, constraints and schemes

Figure 7.3 shows the grammar for size types, constraints and schemes. A size scheme is like a
type scheme from Hindley-Milner style type systems, except that it only mentions the size of
each input array, and ignores the element types.

A size may either be a variable k or a cross product of two sizes. We use the la�er to
represent the result size of the cross operator discussed in the previous section. Constraints
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may either be trivially true, an equality k = τ , or a conjunction of two constraints C ∧C . We
refer to the trivially true and equality constraints as atomic constraints. Size schemes relate the
sizes of each input and output array. �e normalize2 example from Figure 7.1, which returns
two output arrays of the same size as the input, has the following size scheme:

normalize2 :s ∀k . (xs : k) → (ys1 : k , ys2 : k)

We write :s to distinguish size schemes from type schemes.

�e existential quanti�er appears in size schemes when the array produced by a �lter or
generate appears in the result. For example:

filterLeft :s ∀k1.∃k2. (xs : k1) → (ys1 : k1, ys2 : k2)

filterLeft xs

= let ys1 = map (+ 1) xs

ys2 = filter even xs

in (ys1, ys2)

�e size scheme of filterLeft shows that it works for input arrays of all sizes. �e �rst
result array has the same size as the input, and the second has some statically unknown size.
Although the de�nition of the filter function ensures that the result array at most as long as
its input array, this information is not encoded in the size scheme. �e relationship between
the size of the input array and the output array is lost, as our size inference formulation only
supports equality contraints and does not include any kind of less-than-or-equal constraints.

Finally, note that size schemes form only one aspect of the type information that would be
expressible in a full dependently typed language. For example, in Coq or Agda we could write
something like:

filterLeft : ∀k1 : Nat. ∃k2 : Nat. Array k1 Float → (Array k1 Float, Array k2 Float)

However, the type inference systems for fully higher order dependently typed languages
typically require quanti�ed types to be provided by the user, and do not perform the type
generalization process. In our situation, we need automatic type generalization, but for a �rst-
order language only.
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Γ ` lets  Γ ` C

Γ ` let · in exp  Γ ` true
(SNil)

Γ1 | zs ` b  Γ2 ` C1 Γ2 ` let bs in exp  Γ3 ` C2
Γ1 ` let zs = b ; bs in exp  Γ3 ` C1 ∧C2

(SCons)

Γ | z ` bind  Γ ` C

Γ[xsi : ki ]i←1..n | zs ` mapn f {xsi }
i←1..n  Γ, zs : kzs , k ′ `

∧
i←1..n{ki = k

′} ∧ kzs = k
′

Γ | zs ` filter f xs  Γ, zs : kzs , ∃k ′ ` kzs = k
′

Γ | x ` fold f xs  Γ ` true

Γ | zs ` generate s f  Γ, zs : kzs , ∃k ′ ` kzs = k
′

Γ[is : kis ] | zs ` gather xs is  Γ, zs : kzs , k ′ ` kzs = k
′, kis = k ′

Γ[xs : kxs , ys : kys ] | zs ` cross xs ys  Γ, zs : kzs , k ′, k ′′ ` kzs = k
′ × k ′′ ∧

kxs = k
′ ∧ kys = k

′′

Γ | zs ` external {xs}i←1..n  Γ, zs : kzs , ∃k ′ ` kzs = k
′

Figure 7.4: Constraint generation for size inference

7.3.2 Constraint generation

�e rules for constraint generation are shown in Figure 7.4. �e �rst judgment form is wri�en
as (Γ1 ` lets  Γ2 ` C) and reads: “under environment Γ1, the bindings in lets produce the
result environment Γ2 and size constraints C”.

�e second judgment form (Γ1 | zs ` b  Γ2 ` C) performs constraint generation for
a single binding and reads: “under environment Γ1, array or scalar variable zs binds the result
of combinator application b, producing a result environment Γ2 and size constraints C”. �e
environment (Γ) has the following grammar:

Γ ::= · | Γ, Γ | zs : k | k | ∃k

As usual, (·) represents the empty environment and (Γ, Γ) represents environment concate-
nation. �e element (zs : k) records the size k of some array variable zs . A plain k indicates
that k can be uni�ed with other size types when solving constraints, whereas ∃k indicates
a rigid size variable that cannot be uni�ed with other sizes. We use the ∃k syntax because
this variable will also be existentially quanti�ed if it appears in the size scheme of the overall
program.
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�e constraints are generated in a speci�c form in Figure 7.4, to facilitate the constraint
solving process. For each array variable in the program, we generate a new size variable, like
sizekzs for array variable zs . �ese new size variables always appear on the le� of atomic equal-
ity constraints. For each array binding, we may also introduce uni�cation or rigid variables;
these appear on the right of atomic equality constraints.

�e �nal environment and constraints generated for the normalize2 example from Sec-
tion 7.1 are as follows, with the program shown on the right:

xs : kxs ,
gts : kдts , ∃k1,
ys1 : kys1, k2,
ys2 : kys2, k3

` true ∧ kдts = k1

∧ true ∧ kxs = k2 ∧ kys1 = k2

∧ kxs = k3 ∧ kys2 = k3

normalize2 xs

= let sum1 = fold (+) 0 xs

gts = filter (> 0) xs

sum2 = fold (+) 0 gts

ys1 = map (/ sum1) xs

ys2 = map (/ sum2) xs

in (ys1, ys2)

To compute the constraints and environment for this example, the input environment
given to constraint generation records that the input array xs has the corresponding size type
kxs . �is input environment is described in Section 7.3.3. For each binding, the rules in Fig-
ure 7.4 generate a constraint and add any required array and size bindings to the environment.
�e sum1 binding, a fold, does not bind any array variables and works for any input size, so the
corresponding rule leaves the environment as-is and produces a true constraint. For the gts

binding, a filter, the size of the output array is unknown. �e filter rule records the size of
the output array by introducing a new size-type variable kдts , as well as an existential variable
k1; the rule also generates the constraint (kдts = k1). For the ys1 binding, a map, the size of
the output array is the same as the input array. �e map rule introduces a new size variable
kys1 to record the size of the output array, and introduces a new uni�cation variable k2. �e
rule introduces constraints requiring the new uni�cation variable k2 to be equal to both the
input size variable kxs and the output size variable kys1. In the constraints, array size variables
occur on the le�-hand side and uni�cation variables occur on the right-hand side. Constraint
generation for the remaining bindings proceeds similarly.

7.3.3 Constraint solving and generalization

Figure 7.5 shows the rule for assigning a size scheme to a program. �e top-level judgment
form (program :s σ ) assigns size scheme σ to program.
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program :s σ

Γ0 ` let bs in {ysj }
j←1..m  Γ1 ` C1 (Γ2,C2) = SOLVE(Γ1, C1) ∀k ∈ fv(s). (∃k) < Γ2

f {xs}i←1..n = let bs in {ys}j←1..m :s ∀ka . ∃ke . ({xsi : si }i←1..n) → ({ysj : tj }j←1..m)

where Γ0 = {ki , xsi : ki }i←1..n

s = {si | i ∈ 1..n ∧ (ki = si ) ∈ C2}

k ′ = {k ′j | j ∈ 1..m ∧ (ysj : k ′j ) ∈ Γ2}

t = {tj | j ∈ 1..m ∧ (k ′j = tj ) ∈ C2}

ka = {k | k ∈ Γ2 ∧ k ∈ fv(s)}
ke = {k | ∃k ∈ Γ2 ∧ k ∈ fv(t)}

(SProgram)

Figure 7.5: Constraint solving for size inference

Rule (SProgram) assigns a size scheme to a program by �rst extracting size constraints,
before solving them and generalizing the result. In the rule, Γ0 is used as the input environ-
ment to constraint generation, and is constructed by generating a fresh size variable (ki ) for
each input array (xsi ). �e environment and constraints produced by constraint generation
are named Γ1 and C1; these constraints are then solved using the SOLVE function, which we
describe soon. �e constraints, a�er being solved, are stored in C2, and the environment in
Γ2. We use the solved constraints to �nd the size types of the input arrays (s), and the size
types of the output arrays (t ). We perform generalization by adding universal quanti�ers for
the uni�cation variables mentioned by the types of input arrays (ka), and adding existential
quanti�ers for the existential variables mentioned by the types of output arrays (ke ). Finally,
we require that the types of input arrays do not mention any existential variables; an example
of this restriction is shown in Section 7.3.4.

In the rule, the solving process is indicated by SOLVE, and takes an environment and
a constraint set, and produces a solved environment and constraint set. As the constraint
solving process is both standard and straightforward, we only describe it informally.

During constraint generation in the previous section, we were careful to ensure that all
the size variables named a�er program variables are on the le� of atomic equality constraints,
while all the uni�cation and existential variables are on the right. To solve the constraints, we
keep �nding pairs of atomic equality constraints where the same variable appears on the le�,
unify the right of both of these constraints, and apply the resulting substitution to both the
environment and original constraints. When there are no more pairs of constraints with the
same variable on the le�, the constraints are in solved form and we are �nished.
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During constraint solving, all uni�cation variables occuring in the environment can have
other sizes substituted for them. In contrast, the rigid variables marked by the ∃ symbol cannot.
For example, consider the constraints for normalize2 mentioned before:

xs : kxs , gts : kдts , ∃k1, ys1 : kys1, k2, ys2 : kys2, k3

` true ∧ kдts = k1 ∧ true
∧ kxs = k2 ∧ kys1 = k2

∧ kxs = k3 ∧ kys2 = k3

In the highlighted constraints, kxs is mentioned twice on the le� of an atomic equality
constraint, so we can substitute k2 for k3. Eliminating the duplicates, as well as the trivially
true terms then yields:

xs : kxs , gts : kдts , ∃k1, ys1 : kys1, k2, ys2 : kys2, k3

` kдts = k1 ∧ kxs = k2 ∧ kys1 = k2 ∧ kys2 = k2

To produce the �nal size scheme, we look up the sizes of the input and output variables of
the original program from the solved constraints and generalize appropriately. �is process is
determined by the top-level rule in Figure 7.5. In the case of normalize2, no rigid size variables
appear in the result, so we can universally quantify all size variables to get the following size
scheme:

normalize2 :s ∀k2.(xs : k2) → (ys1 : k2, ys2 : k2)

Rule (SProgram) also characterises the programs we accept: a program is valid if and only
if ∃σ . program :s σ .

7.3.4 Rigid sizes

When the environment of our size constraints contains rigid variables (indicated by ∃k), we
introduce existential quanti�ers instead of universal quanti�ers into the size scheme. Consider
the filterLeft program from Section 7.3.1:

filterLeft xs

= let ys1 = map (+ 1) xs

ys2 = filter even xs

in (ys1, ys2)
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�e size constraints for this program, already in solved form, are as follows:

xs : kxs , ys1 : kys1, k1, ys2 : kys2, ∃k2

` kxs = k1 ∧ kys1 = k1 ∧ kys2 = k2

As variable k2 is marked as rigid, we introduce an existential quanti�er for it, producing
the size scheme stated earlier:

filterLeft :s ∀k1. ∃k2. (xs : k1) → (ys1 : k1, ys2 : k2)

Note that, although rule (SProgram) from Figure 7.5 performs a generalization process,
there is no corresponding instantiation rule. �e size inference process works on the entire
graph at a time, and there is no mechanism for one operator to invoke another. To say this
another way, all subgraphs are fully inlined. Recall from Section 7.2 that we assume our op-
erator graphs are embedded in a larger host program. We use size information to guide the
clustering process, and although the host program can certainly call the operator graph, static
size information does not �ow across this boundary.

When producing size schemes, we do not permit the arguments of an operator graph to
have existentially quanti�ed sizes. �is restriction is necessary to reject programs that we
cannot statically guarantee will be well-sized. For example:

bad1 xs

= let flt = filter p xs

ys = map2 f flt xs

in ys

�e above program �lters its input array, and then applies map2 to the �ltered version as
well as the original array. As the map2 operator requires both of its arguments to have the
same size, bad1 would only be valid when the predicate p is always true. We could execute this
program as a process network if we replaced the map2 operator with zipWith, and explicitly
read from the input array xs twice, as in the two-source version of partitionAppend from
Section 5.1.6. �e result size of the zipWith operator is the smaller of the two input operators;
the extra size restriction on map2 simpli�es size inference, as we do not need to introduce the
concept of the minimum of size types. �e size constraints for bad1 are as follows:

xs : kxs , �t : k�t , ∃k1, ys : kys , k2

` k�t = k1 ∧ k�t = k2 ∧ kxs = k2 ∧ kys = k2
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Solving these constraints then yields:

xs : kxs , �t : k�t , ∃k1, ys : kys , k1

` k�t = k1 ∧ kxs = k1 ∧ kys = k1

In this case, rule (SProgram) does not apply, because the parameter variable xs has size
k1, but k1 is marked as rigid in the environment (with ∃k1). �is function is rejected by size
inference, as a caller cannot guarantee that an input array’s size matches the existential size
type chosen by the function.

As a �nal example, the following program is ill-sized because the two �lter operators are
not guaranteed to produce the same number of elements:

bad2 xs

= let flt1 = filter p1 xs

flt2 = filter p2 xs

ys = map2 f flt1 flt2

in ys

�e initial size constraints for this program are:

xs : kxs , �t1 : k�t1, ∃k1, �t2 : k�t2, ∃k2, ys : kys , k3

` k�t1 = k1 ∧ k�t2 = k2 ∧ k�t1 = k3 ∧ k�t2 = k3 ∧ kys = k3

To solve these, we note that k�t1 is used twice on the le� of an atomic equality constraint,
so we substitute k1 for k3:

xs : kxs , �t1 : k�t1, ∃k1, �t2 : k�t2, ∃k2, ys : kys , k1

` k�t1 = k1 ∧ k�t2 = k2 ∧ k�t2 = k1 ∧ kys = k1

At this stage we are stuck, because the constraints are not yet in solved form, and we
cannot simplify them further. Both k1 and k2 are marked as rigid, so we cannot substitute
one for the other and produce a single atomic constraint for k�t2. �e SOLVE function fails to
return a solution, and rule (SProgram) cannot apply.

7.3.5 Iteration size

A�er inferring the size of each array variable, each operator is assigned an iteration size, which
is the number of iterations needed in the loop that evaluates the operator. For filter and
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iterΓ,C : bind → T

iterΓ,C | (z = fold f xs) = C(Γ(xs))
| (ys = mapn f xs) = C(Γ(ys))
| (ys = filter f xs) = C(Γ(xs))
| (ys = generate s f ) = C(Γ(ys))
| (ys = gather is xs) = C(Γ(is))
| (ys = cross as bs) = C(Γ(as)) ×C(Γ(bs))
| (ys = external xs) = ⊥

Figure 7.6: Computing the iteration size of a binding

other size-changing operators, the iteration and result sizes are in general di�erent. For such
an operator, we say that the result size is a descendant of the iteration size. Conversely, the
iteration size is a parent of the result size.

�is descendant–parent size relation is transitive, so if we �lter an array, then �lter the
resulting array, the size of the result is a descendant of the iteration size of the initial �lter.
�is relation arises naturally from the fact that we compile individual clusters into a single
process using process fusion (Chapter 4). With process fusion, such an operation would be
compiled into a process containing a single loop that pulls from a stream backed by the input
array — with an iteration size identical to the size of the input array, and containing two case
instructions to perform the two layers of �ltering.

Iteration sizes are used to decide which operators can be fused with each other. As in prior
work, operators with the same iteration size can be fused. However, in prior work, operators
with di�erent iteration size cannot be assigned to the same cluster, as imperative loop fusion
systems cannot generally fuse loops of di�erent iteration sizes. In our system, we also allow
operators of di�erent iteration sizes to be fused, provided those sizes are descendants of the
same parent size.

We use T to range over iteration sizes, and write ⊥ for the case where the iteration size is
unknown. �e ⊥ size is needed to handle the external operator, as we cannot statically infer
its true iteration size, and it cannot be fused with any other operator.

Iteration Size T ::= τ (known size)
| ⊥ (unknown size)

Once the size constraints have been solved, we can use the iter function in Figure 7.6 to
compute the iteration size of each binding. In the de�nition, we use the syntax Γ(xs) to �nd
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trans : {bind} → name→ {name}
trans(bs ,o)

| o = filter f n ∈ bs = trans′(bs ,n)
| otherwise = trans′(bs ,o)

trans′(bs ,o)
| o = fold f n ∈ bs = ∅

| o = mapn f ns ∈ bs =
⋃

x∈ns trans(bs ,x)
| o = filter f n ∈ bs = {o}
| o = generate s f ∈ bs = ∅

| o = gather i d ∈ bs = trans(bs , i)
| o = cross a b ∈ bs = ∅

| o = external ins ∈ bs = ∅

Figure 7.7: Finding the parent transducers of a combinator

the (xs : k) element in the environment Γ and return the associated size k . Similarly, we use
the syntax C(k) to �nd the corresponding (k = τ ) constraint in C and return the associated
size type τ .

7.3.6 Transducers and compatible common ancestors

We de�ne the concept of transducers as combinators having a di�erent output size to their
iteration size. As with any other combinator, a transducer may fuse with other combinators
of the same iteration size, but transducers may also fuse with combinators having iteration
size the same as the transducer’s output size. For our set of combinators, the only transducer
is filter.

Looking back at the normalize2 example, most combinators consume the input array xs,
and so have an iteration size of kxs . �e �lter that consumes the xs array and produces the
di�erently-sized gts array is a transducer from kxs to kдts . �e fold that consumes the output
of the �lter has an iteration size of kдts . �is fold can be fused with its parent transducer, the
�lter combinator, despite the two having di�erent iteration sizes.

Figure 7.7 de�nes a function trans, to �nd the parent transducer of a combinator application.
Since each name is bound to at most one combinator, we abuse terminology here slightly and
write combinatorn when refering to the combinator occuring in the binding of the namen. �e
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sumPartition xs
= let ys = filter (> 0) xs

zs = filter (< 0) xs
y = fold (+) 0 ys
z = fold (+) 0 zs

in (a,b)

xs

filter

fold

y

ys

filter

fold

z

zs

Figure 7.8: Program sumPartition with clustering diagram

parent transducer trans(bs ,n) of a combinator n has the same output size as n’s iteration size,
but the two have di�erent iteration sizes. Although the input program’s dependency graph
forms a directed acyclic graph, the relationship between the combinators in the graph and
each combinator’s respective parent transducer, if it has one, forms a forest.

With the trans function, we can express the restriction on programs we view as valid for
clustering as the following:

De�nition: sole transducers. If a program p is valid, then its bindings will have at most
one transducer:

∀p,σ ,n. p :s σ =⇒ |trans(binds(p),n)| ≤ 1

Intuitively, we can see that this restriction holds for programs on which size inference suc-
ceeds. By inspecting the de�nition of trans′ and performing case analysis on the combinator
binding, we see that only the mapn clause in trans′ can return multiple transducers, and only
the filter clause directly returns a transducer. Since the constraint generation for mapn re-
quires all inputs to have the same size, the inputs will also have the same transducer. If the
inputs had di�erent transducers, then their size would be generated by di�erent �lters, and
each would have its own separate existential variable as a size type, not ful�lling the same-size
requirement for mapn.

We use the ancestor transducers to determine whether two combinators of di�erent itera-
tion sizes may be fused together. Figure 7.8 shows the sumPartition example, which performs
two �lters over the same array, and computes the sum of each �lter’s output array. �e unfused
imperative version, shown in Listing 7.2, performs each operation as a separate loop. �e last
two loops compute the sums. If we look at these two loops in isolation, the relationship be-
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void sumPartition(int* xs, size_t xs_length, int* out_y, int* out_z)
{

/ / ys = �lter (> 0) xs
int* ys = malloc(sizeof(int) * xs_length);
size_t ys_length = 0;

for (size_t i = 0; i != xs length ; ++i) {

if (xs[i] > 0) ys[ys_length++] = xs[i];
}

/ / zs = �lter (< 0) xs
int* zs = malloc(sizeof(int) * xs_length);
size_t zs_length = 0;

for (size_t i = 0; i != xs length ; ++i) {

if (xs[i] < 0) zs[zs_length++] = xs[i];
}

/ / y = fold (+) 0 ys
int y = 0;

for (size_t i = 0; i != ys length ; ++i) {

y += ys[i];
}
*out_y = y;

/ / z = fold (+) 0 zs
int z = 0;

for (size_t i = 0; i != zs length ; ++i) {

z += zs[i];
}
*out_z = z;

free(ys);
free(zs);

}

Listing 7.2: Unfused imperative implementation of sumPartition with colour-coded iteration
sizes
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void filter2(int* xs, size_t xs_length, int* out_y, int* out_z)
{

/ / ys = �lter (> 0) xs
/ / y = fold (+) 0 ys
int y = 0;

for (size_t i = 0; i != xs length ; ++i) {

if (xs[i] > 0) y += xs[i];
}
*out_y = y;

/ / zs = �lter (< 0) xs
/ / z = fold (+) 0 zs
int z = 0;

for (size_t i = 0; i != xs length ; ++i) {

if (xs[i] < 0) z += xs[i];
}
*out_z = z;

}

Listing 7.3: Partially fused imperative implementation of sumPartition with colour-coded it-
eration sizes

tween the two loop iteration sizes ys_length and zs_length is unknown, and it is not possible
to fuse the two loops together without introducing excessively complicated control-�ow.

�e relationship between the two loop iteration sizes becomes clear when we consider
each sum’s parent transducer, which for the y sum is the �lter that produces ys, and for the z

sum is the �lter that produces zs. Listing 7.3 shows a partially fused imperative version, where
each sum is fused with its parent transducer. In this partially fused version, the two sums are
still computed in separate loops, but both loops use the same iteration size. Fusing these two
loops together is trivial.

�e key insight from this example is that two combinators of di�erent iteration sizes may
be fused together if each combinator is fused with its parent transducer, and the two parent
transducers are also fused together. If the two parent transducers also have di�erent iteration
sizes, their respective parent transducers must also be fused together. In this case, we skip the
parent transducers, and look directly at the closest pair of ancestor transducers with the same
iteration size as each other.

Figure 7.9 de�nes the concestors function, which �nds the pair of most recent common
ancestor transducers such that both ancestors have the same iteration size. In the �eld of
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concestors: {bind} → name→ name→ (name × name)⊥
concestors(bs ,a,b)

| (pa ,pb ,d) ∈ concestors′(bs ,a,b)
= {(a,b)}

| otherwise
= ⊥

concestors′: {bind} → name→ name→ (name × name ×N)⊥
concestors′(bs ,a,b)

| iterΓ,C(bs(a)) == iterΓ,C(bs(b))
= {(a,b, 0)}

| a′ ∈ trans(bs ,a), pa ∈ concestors′(bs ,a′,b)
, b′ ∈ trans(bs ,b), pb ∈ concestors′(bs ,a,b′)

= increment(closest(pa ,pb))
| a′ ∈ trans(bs ,a), pa ∈ concestors′(bs ,a′,b)

= increment(pa)
| b′ ∈ trans(bs ,b), pb ∈ concestors′(bs ,a,b′)

= increment(pb)
| otherwise

= ⊥

closest : (name × name ×N) → (name × name ×N) → (name × name ×N)

closest((la , lb , ld), (ra , rb , rd))
| ld ≤ rd = (la , lb , ld)
| otherwise = (ra , rb , rd)

increment : (name × name ×N) → (name × name ×N)

increment((a,b,d)) = (a,b,d + 1)

Figure 7.9: Finding the compatible concestors, or most recent common ancestors with the same
iteration size
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biological systematics, the term concestor is de�ned as the most recent common ancestor; here,
we de�ne the compatible concestors of a transducer to be the pair of most recent common
ancestors with the same iteration size. In the de�nition of the concestors function, we use
the syntax (name × name)⊥ to denote an optional pair of names. Two combinators a and
b of di�erent iteration size may be fused together only if they have compatible concestors
(c ,d) ∈ concestors(a,b), and the combinators and their compatible concestors are also fused
together. �at is, in order for a and b to be fused together, c and d must be fused, a and c must
be fused, and d and b must be fused. If the two combinators a and b have the same iteration
size, then the two compatible concestors will be the combinators themselves, and the above
requirements for fusing di�erent sized combinators are trivially satis�ed, since a combinator
is always fused with itself.

Still in Figure 7.9, the de�nition of concestors′ returns the pair of compatible concestors
as well as the distance, determined by counting how many other ancestor transducers there
are between the combinator and the compatible concestors. �e closest function compares the
distances of two pairs of compatible concestors and chooses the closest pair. �e increment
function increases the distance by one.

�e trans function returns only the direct parent transducer, but a single combinator can
have multiple ancestor transducers. For a pair of combinators with multiple ancestor trans-
ducers, there may be multiple compatible common ancestors, but there can only be one pair of
most recent compatible common ancestors (compatible concestors), because of the tree struc-
ture of ancestor transducers. In general, a pair of di�erently-sized combinators could be fused
together if any pair of compatible common ancestors are fused together with the combinators.
Because fusing the combinators with any pair of compatible common ancestors requires fus-
ing with the compatible concestors as well, it is su�cient to require the pair of combinators
to be fused with just the compatible concestors.

�e normalize2 example from earlier is repeated in Listing 7.4. In this example, sum1 con-
sumes the input xs, while sum2 consumes the output of the �lter gts, which in turn consumes
the input xs. �e two folds have di�erent iteration sizes, and their compatible concestors are
concestors(sum1, sum2) = (sum1, gts). �e compatible concestors sum1 and gts both consume
the input xs and have the same iteration size. In order for sum1 and sum2 to be fused together,
we require that: sum1 and gts are fused together; sum1 and sum1 are fused together, which is
trivial as fusion is re�exive; and gts and sum2 are fused together.
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normalize2 :: Array Int → (Array Int, Array Int)
normalize2 xs
= let sum1 = fold (+) 0 xs

gts = filter (> 0) xs
sum2 = fold (+) 0 gts
ys1 = map (/ sum1) xs
ys2 = map (/ sum2) xs

in (ys1, ys2)

Listing 7.4: Normalize2 function

sum1

fold

xs

map

map

ys

incs

fold

xs

map

map

ys

sum1
incs

Figure 7.10: Two clusterings for normalizeInc
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7.4 I N T E G E R L I N E A R P R O G R A M M I N G

It is usually possible to cluster a program graph in multiple ways. For example, consider the
following simple function:

normalizeInc :: Array Int → Array Int

normalizeInc xs

= let incs = map (+1) us

sum1 = fold (+) 0 us

ys = map (/ sum1) incs

in ys

Two possible clusterings are shown in Figure 7.10. One option is to compute sum1 �rst and
fuse the computation of incs and ys. Another option is to fuse the computation of incs and
sum1 into a single loop, then compute ys separately. A third option (not shown) is to compute
all results separately, and not perform any fusion.

Which option is be�er? On current hardware, we generally expect the cost of memory
access to dominate runtime. �e �rst clustering in Figure 7.10 requires two reads from array
xs and one write to array ys. �e second clustering requires a single fused read from xs, one
write to incs, a read back from incs and a �nal write to ys. From the size constraints of
the program, we know that all intermediate arrays have the same size, so we expect the �rst
clustering will peform be�er as it only needs three array accesses per element in the input
array, instead of four.

For small programs such as normalizeInc, it is possible to naively enumerate all possible
clusterings, select just those that are valid with respect to fusion-preventing edges, and choose
the one that maximises a cost metric such as the number of array accesses needed. However, as
the program size increases the number of possible clusterings becomes too large to naively enu-
merate. For example, Pouchet et al. (2010, 2011) present a fusion system using the polyhedral
model and report that some simple numeric programs have over 40,000 possible clusterings,
with one particular example having 1012 clusterings.

To deal with the combinatorial explosion in the number of potential clusterings, we instead
use an integer linear programming (ILP) formulation. ILP problems are de�ned as a set of vari-
ables, an objective linear function and a set of linear constraints. �e integer linear solver �nds
an assignment to the variables that minimises the objective function, while satisfying all con-
straints. For the clustering problem, we express our constraints regarding fusion-preventing
edges as linear constraints on the ILP variables, then use the objective function to encode our
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cost metric. �is general approach was �rst fully described by Megiddo and Sarkar (1997); our
main contribution is to extend their formulation to work with size-changing operators such
as filter.

7.4.1 Dependency graphs

A dependency graph represents the data dependencies of the program to be fused, and we use
it as an intermediate stage when producing linear constraints for the ILP problem. �e depen-
dency graph contains enough information to determine the possible clusterings of the input
program, while abstracting away from the exact operators used to compute each intermediate
array. �e rules for producing dependency graphs are shown in Figure 7.11.

Each binding in the source program becomes a node (V ) in the dependency graph. For
each intermediate variable, we add a directed edge (E) from the binding that produces a value
to all bindings that consume it. Each edge is also marked as either fusible or fusion-preventing.
Fusion-preventing edges are used when the producer must �nish its execution before the con-
sumer node can start. For example, a fold operation must complete execution before it can
produce the scalar value needed by its consumers. Conversely, the map operation produces an
output value for each value it consumes; as the input array is processed from start to end and
values are produced incrementally, its edge is marked as fusible.

�e gather operation is a hybrid: it takes an indices array and an elements array, and for
each element in the indices array returns the corresponding data element. �is means that
gather can be fused with the operation that produces its indices, but not the operation that
produces its elements — because those are accessed in a random-access manner.

�e cross operation computes the cartesian product by looping over its second array for
every element in the �rst array, so it can fuse with the operation that produces its �rst input,
but requires the second input to be a manifest array.

7.4.2 Integer linear program variables

A�er generating the dependency graph, the next step is to produce a set of linear constraints
from this graph. �e variables involved in these constraints are split into three groups, shown
in Figure 7.12.

�e �rst group of variables, x , is parameterised by a pair of node indices from the depen-
dency graph. For each pair of nodes with indices i and j, we use a boolean variable xi ,j , which
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V ::= (name ×T )
E ::= (name × name × ET )
ET ::= fusible | fusion-preventing

nodes : program→ {V }
nodes(bs) = {(name(b), iterΓ,C(b)) | b ∈ bs}

edges : program→ {E}
edges(bs) =

⋃
b∈bs edge(bs ,b)

edge : {bind} × bind → {E}
edge(bs , out = b)

| fold f in ← b
| map f in ← b
| filter f in ← b
= {inedge(bs , out, s) | s ∈ fv(f )} ∪ {inedge(bs , out, in)}
| gather data indices ← b
= {(out, data, fusion-preventing)} ∪ {inedge(bs , out, indices)}
| cross a b ← b
= {inedge(bs , out,a)} ∪ {(out,b, fusion-preventing)}
| external ins ← b
= {(o, i , fusion-preventing) | o ∈ out, i ∈ ins}

inedge : {bind} × name × name→ E
inedge(bs , to, from)

| (from = fold f s) ∈ bs
= (to, from, fusion-preventing)
| (outs = external . . .) ∈ bs ∧ from ∈ outs
= (to, outs, fusion-preventing)
| otherwise
= (to, from, fusible)

Figure 7.11: Dependency Graphs from Programs

x : V ×V → B

π : V → R

c : V → B

Figure 7.12: De�nition of variables in the integer linear program
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mapFoldMap xs
= let ys = map (+1) xs

sum = fold (+) 0 ys
zs = map (+sum) ys

in zs
fold

xs

map

map

zs

sum

ys

Figure 7.13: Program mapFoldMap, with an invalid clustering that contains a cycle

indicates whether those two nodes are fused. We use xi ,j = 0 when the nodes are fused and
xi ,j = 1 when they are not. Using 0 for the fused case means that the objective function can
be a weighted function of the xi ,j variables, and minimizing it tends to increase the number of
nodes that are fused. �e values of these variables are used to construct the �nal clustering,
such that ∀i , j. xi ,j = 0 ⇐⇒ cluster(i) = cluster(j).

�e second group of variables in Figure 7.12, π , is parameterised by a single node index.
�is group of variables is used to ensure that the clustering is acyclic. An acyclic clustering is
necessary to be able to execute the resulting clustering: we need to ensure that for each node
in the graph, the dependencies of that node can be executed before the node itself. For each
node i , we associate a real number πi , such that for every node j that depends on i and is not
fused with i , we have πj > πi . Our linear constraints will ensure that if two nodes are fused
into the same cluster, then their π values will be identical — though nodes in di�erent clusters
can also have the same π value.

�e le� of Figure 7.13 shows an example program, mapFoldMap, with an invalid clustering
shown on the right. In this program, there is no fusion-preventing edge directly between the
ys and zs bindings, but there is a fusion-preventing edge between sum and zs. �e cluster
diagram shows the ys and zs bindings in the same cluster, while sum is in a di�erent cluster.
�is clustering contains a dependency cycle between the two clusters, and neither can be
executed before the other. We constrain the π variables to reject this clustering, by requiring
that πys ≤ πsum < πzs. Since πys < πzs, the two cannot be in the same cluster.
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�e �nal group of variables in Figure 7.12, c , is parameterised by a single node index. �is
group of variables is used to help de�ne the cost model encoded by the objective function.
Each node is assigned a variable ci that indicates whether the array produced by the associated
binding is fully contracted. When an array is fully contracted, it means that all consumers of
that array are fused into the same cluster, so we have ci = 0 ⇐⇒ (∀(i′, j) ∈ E. i = i′ =⇒

xi ,j = 0). In the �nal program, each successive element of a fully contracted array can be stored
in a scalar register, rather than requiring an array register or memory storage.

�e names of the �rst two variable groups are standard; we propose the rather strained
mnemonics xi ,j denotes an extra loop between i and j; πi denotes i’s position in the topological
ordering; and ci denotes that i’s output array is fully contracted. �ese three variable groups
are a mixture of the variables from previous work. Megiddo and Sarkar (1997)’s formulation
uses the x and π groups, but does not include the c group; their cost model does not take
into account fully contracted arrays. Darte and Huard (2002)’s formulation uses both c and π
groups, where they are called k and ρ respectively, but does not include the x group, which is
necessary for our formulation of size-changing operations.

7.4.3 Linear constraints

We place linear constraints on the integer linear program variables, and split the constraints
into four groups: constraints that ensure the clustering is acyclic; constraints that encode
fusion-preventing edges; constraints describing when nodes with di�erent iteration sizes can
be fused together; and constraints involving array contraction.

Acyclic and precedence-preserving constraints

�e �rst group of constraints ensures that the clustering is acyclic, using the π variable group
described earlier:

xi ,j ≤ πj − πi ≤ N · xi ,j (with an edge from i to j)
−N · xi ,j≤ πj − πi ≤ N · xi ,j (with no edge from i to j)

As per Megiddo and Sarkar (1997), the form of these constraints is determined by whether
there is a dependency between nodes i and j. �e N value is set to the total number of nodes
in the graph.

If there is an edge from node i to node j, we use the �rst constraint form shown above. If
the two nodes are fused into the same cluster then we have xi ,j = 0. In this case, the constraint
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simpli�es to 0 ≤ πj −πi ≤ 0, which forces πi = πj . If the two nodes are in di�erent clusters then
the constraint instead simpli�es to 1 ≤ πj − πi ≤ N . �is means that the di�erence between
the two π variables must be at least 1, and less than or equal to N . Since there are N nodes,
the maximum number of clusters, when each node is assigned to its own separate cluster, is
N clusters. For this clustering the di�erence between any two π variables would be at most
N , so the upper bound of N is large enough to be safely ignored. Ignoring the upper bound,
the constraint can roughly be translated to πi < πj , which enforces the acyclicity constraint.

If instead there is no edge from node i to node j, then we use the second constraint form
above. As before, if the two nodes are fused into the same cluster then we have xi ,j = 0,
which forces πi = πj . If the nodes are in di�erent clusters then the constraint simpli�es to
−N ≤ πj − πi ≤ N , which e�ectively puts no constraint on the π values.

Fusion-preventing edges

As per Megiddo and Sarkar (1997), if there is a fusion-preventing edge between two nodes, we
add a constraint to ensure that the nodes will be placed in di�erent clusters.

xi ,j = 1
(for fusion-preventing edges from i to j)

When combined with the precedence-preserving constraints shown earlier, se�ing xi ,j = 1
also forces πi < πj .

Fusion between di�erent iteration sizes

�is group of constraints restricts which nodes can be placed in the same cluster, based on
their iteration size. �e group has three parts. Firstly, if either of the two nodes connected by
an edge have an unknown (⊥) iteration size, as with external operators, then they cannot be
fused and we set xi ,j = 1:

xi ,j = 1
(if iterΓ,C(i) = ⊥ ∨ iterΓ,C(j) = ⊥)

Secondly, if the two nodes have di�erent iteration sizes and no common ancestors with
compatible iteration sizes, then they also cannot be fused and we set xi ,j = 1:

xi ,j = 1
(if iterΓ,C(i) , iterΓ,C(j) ∧ concestors(i , j) = ⊥)
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Finally, if the two nodes have di�erent iteration sizes but do have compatible common
ancestors, then the two nodes can be fused together if they are fused with their respective
concestors, and the concestors themselves are fused together:

xa,A ≤ xa,b

xb,B ≤ xa,b

xA,B ≤ xa,b

(if iterΓ,C(a) , iterΓ,C(b) ∧ (A,B) ∈ concestors(a,b))

�is last part is the main di�erence to existing ILP solutions: we allow nodes with di�erent
iteration sizes to be fused when their common ancestor transducers are fused. �e actual
constraints encode a “no more fused than” relationship. For example, xa,A ≤ xa,b means that
nodes a and b can be no more fused than nodes a and A.

As a simple example, consider fusing an operation on �ltered data with its generating �lter,
as in the folds from normalize2:

sum1 = fold (+) 0 xs

gts = filter (>0) xs

sum2 = fold (+) 0 gts

Here, sum1 and sum2 have di�erent iteration sizes, and their compatible common ances-
tor transducers are computed to be concestors(sum1, sum2) = (sum1, gts). With the above con-
straints, sum1 and sum2 may only be fused together if three requirements are satis�ed: sum1 is
fused with sum1 (trivial), sum2 is fused with gts, and sum1 is fused with gts.

Array contraction

�e �nal group of constraints gives meaning to the c variables, which represent whether an
array is fully contracted:

xi ,j ≤ ci

(for all edges from i)

An array is fully contracted when all of the consumers are fused with the node that pro-
duces it, which means that the array does not need to be fully materialized in memory. As per
Darte and Huard (2002)’s work on array contraction, we de�ne a variable ci for each array, and
the constraint above ensures that ci = 0 only if ∀(i′, j) ∈ E. i = i′ =⇒ xi ,j = 0. By minimizing
ci in the objective function, we favour solutions that reduce the number of intermediate arrays.
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7.4.4 Objective function

�e objective function de�nes the cost model of the program, and the ILP solver will �nd
the clustering that minimizes this function while satisfying all the constraints de�ned in the
previous section. Our cost model has three components:

• the number of array reads and writes — an abstraction of the amount of memory band-
width needed by the program;

• the number of intermediate arrays — an abstraction of the amount of intermediate mem-
ory needed;

• the number of distinct clusters — an abstraction of the cost of loop management instruc-
tions, which maintain loop counters and the like.

�e three components of the cost model are a heuristic abstraction of the true cost of ex-
ecuting the program on current hardware. �ey are ranked in order of importance — so we
prefer to minimize the number of array reads and writes over the number of intermediate
arrays, and to minimize the number of intermediate arrays over the number of clusters. How-
ever, minimizing one component does not necessarily minimize any other. For example, as
the fused program executes multiple array operations at the same time, in some cases the clus-
tering that requires the least number of array reads and writes uses more intermediate arrays
than strictly necessary.

As this cost model simply counts the number of intermediate arrays, the cost model as-
sumes that the arrays are close enough in size that the di�erence is not signi�cant. One pos-
sible extension would be to add size hints to each array, and scale each array’s cost by its
expected size. We do not assign any cost to the worker functions, because each worker func-
tion will be called the same number of times regardless of the clustering. �is simpli�cation
ignores the locality bene�ts of fusion, as two worker functions performed in the same cluster
will o�en operate over the same input value, or share work in some way. For datasets sourced
from network or disk, the cost of reading the data can be several orders of magnitudes larger
than any locality bene�ts.

We encode the ordering of the components of the cost model as di�erent weights in the
objective function. First, note that if the program graph contains N combinators (nodes) then
there are at most N opportunities for fusion, and at most N intermediate arrays. We then
encode the relative cost of loop overhead as weight 1, the cost of an intermediate array as
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Minimise Σ(i ,j)∈EWi ,j · xi ,j (memory tra�c and loop overhead)
+ Σi∈VN · ci (removing intermediate arrays)

Subject to . . . constraints from Section 7.4.3 . . .
Where Wi ,j = N 2 | (i , j) ∈ E

(fusing i and j will reduce memory tra�c)
Wi ,j = N 2 | ∃k .(k , i) ∈ E ∧ (k , j) ∈ E

(i and j share an input array)
Wi ,j = 1 | otherwise

(the only bene�t is loop overhead)

N = |V | (the number of nodes in the graph)

Figure 7.14: Integer linear program with objective function

possible : name × name→ B

possible(a,b) = ∀p ∈ path(a,b) ∪path(b,a). fusion-preventing < p
possible′ : name × name→ B

possible′(a,b) = ∃A,B. (A,B) ∈ concestors(a,b) ∧ possible(a,b)
∧ possible(A,a) ∧ possible(B,b) ∧ possible(A,B)

Figure 7.15: De�nition of possible function for checking fusion-preventing paths

weight N , and the cost of an array read or write as weight N 2. �ese coe�cients ensure that
no amount of loop overhead reduction can outweigh the bene�t of removing an intermediate
array, and likewise no number of removed intermediate arrays can outweigh a reduction in the
number of array reads or writes. �e integer linear program including the objective function
is shown in Figure 7.14.

7.4.5 Fusion-preventing path optimisation

�e integer linear program de�ned in the previous section includes more constraints than
strictly necessary to de�ne the valid clusterings. If two nodes have a path between them that
includes a fusion-preventing edge, then we know upfront that they must be placed in di�erent
clusters. Figure 7.15 de�nes the function possible(a,b), which determines whether there is
any possibility that the two nodes a and b can be fused. Similarly, the function possible′(a,b)
checks whether there is any possibility that the compatible common ancestors of a and b may
be fused.
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Minimise Σ(i ,j)∈EWi ,j · xi ,j + Σi∈VN · ci
(if possible(i , j))

Subject to −N · xi ,j ≤ πj − πi ≤ N · xi ,j
(if possible(i , j) ∧ (i , j) < E ∧ (j, i) < E)
xi ,j ≤ πj − πi ≤ N · xi ,j
(if possible(i , j) ∧ (i , j, fusible) ∈ E)

πi < πj
(if (i , j, fusion-preventing) ∈ E)
xi ,j ≤ ci
(if (i , j, fusible) ∈ E)
ci = 1
(if (i , j, fusion-preventing) ∈ E)
xi ,j = 1
(if ⊥ ∈ {iterΓ,C(i), iterΓ,C(j)})
xi ′,i ≤ xi ,j
xj ′,j ≤ xi ,j
xi ′,j ′ ≤ xi ,j
(if iterΓ,C(i) , iterΓ,C(j) ∧ possible′(i , j)

∧ concestors(i , j) = {(i′, j′)})
xi ,j = 1
(if iterΓ,C(i) , iterΓ,C(j) ∧ ¬possible′(i , j))

Where Wij = N 2 | (i , j) ∈ E
(fusing i and j will reduce memory tra�c)

Wij = N 2 | ∃k .(k , i) ∈ E ∧ (k , j) ∈ E
(i and j share an input array)

Wij = 1 | otherwise

(the only bene�t is loop overhead)

N = |V | (the number of nodes in the graph)

Figure 7.16: Integer linear program with fusion-preventing path optimisation
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Unfused Stream Megiddo Ours
Time Loops Time Loops Time Loops Time Loops

Normalize2 0.37s 5 0.31s 4 0.34s 3 0.28s 2
Closest points 7.34s 7 6.86s 6 6.33s 4 6.33s 4
�adtree 0.25s 8 0.25s 8 0.11s 2 0.11s 2
�ickhull 0.43s 4 0.39s 3 0.28s 2 0.21s 1

Table 7.1: Benchmark results

With possible and possible′ de�ned, we re�ne our formulation to only generate constraints
between two nodes if there is a chance they may be fused together. �e �nal formulation
of the integer linear program is shown in Figure 7.16. �is re�ned version generates fewer
constraints, and makes the job of the ILP solver easier.

7.5 B E N C H M A R K S

�is section discusses four representative benchmarks, and gives the full ILP program of the
�rst benchmark. �ese benchmarks highlight the main di�erences between our fusion mech-
anism and related work. �e runtimes of each benchmark are summarized in Table 7.1. We
report times and the number of clusters for: the unfused case, where each operator is assigned
to its own cluster; the clustering implied by pull-based stream fusion (Cou�s et al., 2007); the
clustering chosen by Megiddo and Sarkar (1997); and the clustering chosen by our system.

For each benchmark, we compute the di�erent clusterings, and compile each cluster using
the process fusion implementation described in Chapter 5. Using the same fusion algorithm
isolates the true cost of the various clusterings from low-level di�erences in code generation.

We have used both GLPK (GLPK, 2013) and CPLEX (CPLEX, 2013) as external ILP solvers.
For small programs such as normalizeInc, both solvers produce solutions in under 100ms. For
a larger randomly generated example with twenty-�ve combinators, GLPK took over twenty
minutes to produce a solution, while the commercial CPLEX solver was able to produce a
solution in under one second — which is still quite usable. We will investigate the reason for
this wide range in performance in future work.

�e implementations of the di�erent clusterings for the benchmark programs are available
at https://github.com/amosr/folderol/tree/bench/bench/Bench/Clustering.

https://github.com/amosr/folderol/tree/bench/bench/Bench/Clustering
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7.5.1 Normalize2

To demonstrate the ILP formulation, we will use the normalize2 example from Section 7.1,
repeated here:

normalize2 :: Array Int → (Array Int, Array Int)

normalize2 xs

= let sum1 = fold (+) 0 xs

gts = filter (> 0) xs

sum2 = fold (+) 0 gts

ys1 = map (/ sum1) xs

ys2 = map (/ sum2) xs

in (ys1, ys2)

We use the ILP formulation with fusion-preventing path optimisation from Section 7.4.5.
First, we calculate the possible function to �nd the nodes which have no fusion-preventing
path between them. �e sets of nodes which can potentially be fused together are as follows:

{{sum1,дts , sum2}, {sum1,ys2}, {дts , sum2,ys1}, {ys1,ys2}}

�e complete ILP program is shown in Figure 7.17. In the objective function the weights
for xsum1,sum2 and xsum2,ys1 are both only 1, because the respective combinators do not share
any input arrays.

One minimal solution to the integer linear program for normalize2 is given in Figure 7.18.
�is minimal solution is not unique, though in this case the only other minimal solutions use
di�erent π values, and denote the same clustering. Looking at just the non-zero variables in
the objective function, the value is 25 · xsum1,ys2 + 25 · xдts ,ys1 + 1 · xsum2,ys1 = 51. For illustrative
purposes, note that the objective function could be reduced by se�ing xsum1,ys2 = 0 (fusing
sum1 and ys1), but this con�icts with the other constraints. Since xsum1,sum2 = 0, we require
that πsum1 = πsum2, as well as πsum2 < πys2. �ese constraints cannot be satis�ed, so a clustering
that fused sum1 and ys2 would not also permit sum1 and sum2 to be fused.

We will now compare the clustering produced by our system with the one implied by pull-
based stream fusion. As we saw in Section 2.2, pull streams do not support distributing an
input stream among multiple consumers; likewise, stream fusion does not support fusing an
input with multiple consumers into a single loop. �e corresponding values of the xij variables
are:
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Minimise 25 · xsum1,дts + 1 · xsum1,sum2 + 25 · xsum1,ys2+
25 · xдts ,sum2 + 25 · xдts ,ys1 + 1 · xsum2,ys1+
25 · xys1,ys2 + 5 · cдts + 5 · cys1 + 5 · cys2

Subject to −5 · xsum1,дts ≤ πдts − πsum1 ≤ 5 · xsum1,дts
−5 · xsum1,sum2 ≤ πsum2 − πsum1 ≤ 5 · xsum1,sum2
−5 · xsum1,ys2 ≤ πys2 − πsum1 ≤ 5 · xsum1,ys2
−5 · xдts ,ys1 ≤ πys1 − πдts ≤ 5 · xдts ,ys1
−5 · xsum2,ys1 ≤ πys1 − πsum2 ≤ 5 · xsum2,ys1
−5 · xys1,ys2 ≤ πys2 − πys1 ≤ 5 · xys1,ys2

xдts ,sum2 ≤ πsum2 − πдts ≤ 5 · xдts ,sum2

πsum1 < πys1
πsum2 < πys2

xдts ,sum2 ≤ cдts

xдts ,sum2 ≤ xsum1,sum2
xsum1,sum1 ≤ xsum1,sum2
xsum1,дts ≤ xsum1,sum2

Figure 7.17: Complete integer linear program for normalize2

xsum1,дts , xsum1,sum1, xsum1,sum2, xдts ,sum2, xys1,ys2 = 0
xsum1,ys2, xдts ,ys1, xsum2,ys1 = 1
πsum1, πдts , πsum2 = 0
πys1, πys2 = 1
cдts , cys1, cys2 = 0

Figure 7.18: A minimal solution to the integer linear program for normalize2
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xдts ,sum2 = 0
xsum1,дts ,xsum1,sum2,xys1,ys2,xsum1,ys2,xдts ,ys1,xsum2,ys1 = 1

We can force this clustering to be applied in our integer linear program by adding the
above equations as new constraints. Solving the resulting program then yields:

πsum1,πдts ,πsum2 = 0
πys1,πys2 = 1
cдts , cys1, cys2 = 0

Note that although nodes sum1 and sum2 have equal π values, they are not fused because
their x values are non-zero. Conversely, if two nodes have di�erent π values, they are never
fused.

For the stream fusion clustering, the corresponding value of the objective function is:
25 · xsum1,дts + 1 · xsum1,sum2 + 25 · xsum1,ys2 + 25 · xдts ,ys1 + 1 · xsum2,ys1 + 25 · xys1,ys2 = 102.

7.5.2 Closest points

�e closest points benchmark is a divide-and-conquer algorithm that �nds the distance be-
tween the closest pair of two-dimensional points in an array. We �rst �nd the midpoint along
the Y-axis, and �lter the remaining points to those above and below the midpoint. We then
recursively �nd the closest pair of points in the two halves, and merge the results.

�e closest points implementation is shown in Listing 7.5, with our clustering described
in the comments. To compute the clustering of this program, we ignore the base case for
small arrays and only look at the recursive case. Our formulation does not directly support
the length operator; we encode the operation to compute the midy midpoint as an external

combinator when performing clustering. �e two recursive calls are also encoded as external
combinators. As the �ltered points in aboves and belows are passed directly to the recursive
call, there is no further opportunity to fuse them, and our clustering is the same as returned
by Megiddo’s algorithm. However, unlike stream fusion, our clustering fuses the �lter combi-
nators for arrays aboves and belows into a single loop, as well as fusing the �lter combinators
for arrays aboveB and belowB.
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closestPoints :: Array Point → Double
closestPoints pts
| length pts < 100
−−Naive O(n2) implementation for small arrays
= closestPointsNaive pts
| otherwise
= let −− (external) Midpoint

midy = fold (λs (x,y) → s + y) 0 pts / length pts
−− (cluster 1) Filter above and below
aboves = filter (above midy) pts
belows = filter (below midy) pts
−− (external) Recursive ‘divide’ step
above' = closestPoints aboves
below' = closestPoints belows
border = min above' below'
−− (cluster 2) Find points near the border to compare against each other
aboveB = filter (λp → below (midy - border) p && above border p) pts
belowB = filter (λp → above (midy + border) p && below border p) pts
−− (cluster 3) Merge results for ‘conquer’ step
merged = cross aboveB belowB
dists = map distance merged
mins = fold min border dists

in mins

Listing 7.5: Closest points benchmark
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7.5.3 �adtree

�e �adtree benchmark recursively builds a two-dimensional space partitioning tree from
an array of points. We �rst �nd the initial bounding-box that all the points �t into, by com-
puting the minimum and maximum of both X and Y axes. �en, at each recursive step, the
bounding-box is split into four quadrants, and each point in the array is placed in the array
for its corresponding quadrant.

�e �adtree implementation is shown in Listing 7.6. �e initialBounds de�nition de-
constructs the input points into two arrays containing the X and Y axes using two map op-
erations. �e minimum and maximum operations are implemented as folds. Our clustering for
initialBounds fuses all six operations into a single loop, as does Megiddo’s clustering. Stream
fusion requires a separate loop for each fold, and would require a separate loop for each map

operation, as each result is used twice. �e Vector library, which implements stream fusion,
supports constant-time unzip by using a struct-of-arrays representation for unboxed arrays of
pairs. To provide a fair comparison, we replace the map operations with constant-time unzip

in the stream fusion clustering for initialBounds, leading to four loops in total.

�e go function performs the recursive loop over the points array. First, it checks whether
the input array is empty or contains a single unique point, and returns a leaf node if so. Other-
wise, the bounding-box is split into its four quadrants, and the points are partitioned into an
array for each quadrant. Our clustering for go fuses all four �lters into a single loop, as does
Megiddo’s clustering. Stream fusion requires a separate loop for each �lter, with four loops in
total.

7.5.4 �ickhull

We previously benchmarked the �ickhull algorithm in the process fusion benchmarks, in
Chapter 5. Listing 7.7 shows the implementation of filterMax, which forms the core of the
�ickhull algorithm. In our previous benchmark, we saw that stream fusion was unable to
fuse filterMax into a single loop because the ptsAnn array is used twice. Stream fusion only
fuses the combinators for aboveAnn and above together, requiring three loops in total.

For filterMax, our clustering algorithm produces a single cluster with all combinators
fused together. Megiddo’s clustering for filterMax requires a separate loop for the map opera-
tion that produces the above array, as it is looping over the result of a �lter.
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quadtree :: Array Point → Quadtree
quadtree pts = go pts initialBounds
where
initialBounds
= let −− (cluster 1.1) Compute initial bounds

xs = map fst pts
ys = map snd pts
x1 = minimum xs
x2 = maximum xs
y1 = minimum ys
y2 = maximum ys

in (x1, y1, x2, y2)

go ins box
−−Non-recursive base cases for empty and small input arrays
| length ins == 0
= Nil
−− Check if bounding-box contains a single point
| smallbox box
= LeafArray ins
| otherwise
= let −− (external) Split input box into four quadrants

(b1,b2,b3,b4) = splitbox box
−− (cluster 2.1) Partition input points into above quadrants
p1 = filter (inbox b1) ins
p2 = filter (inbox b2) ins
p3 = filter (inbox b3) ins
p4 = filter (inbox b4) ins
−− Recurse into each partitioned quadrant separately

in Tree (go p1 b1) (go p2 b2) (go p3 b3) (go p4 b4)

Listing 7.6: �adtree benchmark

filterMax :: Line → Array Point → (Point, Array Point)
filterMax l pts
= let −− (cluster 1) Compute �lter and maximum

ptsAnn = map (λp → (p, distance p l)) pts
maximAnn = maximumBy (compare `on` snd) ptsAnn
aboveAnn = filter ((>0) ◦ snd) ptsAnn
above = map fst aboveAnn

in (fst maximAnn, above)

Listing 7.7: �ickhull core (filterMax) implementation
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7.6 R E L AT E D W O R K

�e idea of using integer linear programming to cluster an operator graph for array fusion
was �rst fully described by Megiddo and Sarkar (1997). A simpler formulation, supporting
only loops of the same iteration size, but optimizing for array contraction, was then described
by Darte and Huard (2002). Both algorithms were developed in the context of imperative
languages (Fortran) and are based around a Loop Dependence Graph (LDG). In a LDG, the
nodes represent imperative loops, and the edges indicate which loops may or may not be fused.
Although this work was developed in a context of imperative programming, the conceptual
framework and algorithms are language agnostic. In earlier work, Cha�erjee (1993) mentioned
that ILP can be used to schedule a data �ow graph, though did not give a complete formulation.
Our system extends the prior ILP approaches with support for size-changing operators such
as filter.

In the loop fusion literature, the ILP approach is considered “optimal” because it can �nd
the clustering that minimizes a global cost metric. In our case, the metric is de�ned by the
objective function of Section 7.4.4. Besides optimal algorithms, there are also heuristic ap-
proaches. For example, Gao et al. (1992) use the max�ow-mincut algorithm to try to maximize
the number of fused edges in the LDG. Kennedy (2001) describes another greedy approach
which tries to maximize the reuse of intermediate arrays, and Song et al. (2004) tries to reduce
memory references.

Greedy and heuristic approaches that operate on lists of bindings rather than the graph,
such as Rompf et al. (2013), can �nd optimal clusterings in some cases, but are subject to
changes in the order of bindings. In these cases, reordering bindings can produce a di�erent
clustering, leading to unpredictable runtime performance.

Darte (1999) formalizes the algorithmic complexity of various loop fusion problems and
shows that globally minimizing most useful cost metrics is NP-complete. Our ILP formulation
itself is NP-hard, though in practice we have not yet found this to be a problem when using
the CPLEX commercial solver (CPLEX, 2013).

Recent literature on array fusion for imperative languages largely focuses on the poly-
hedral model. �e polyhedral model is an algebraic representation imperative loop nests and
transformations on them, including fusion transformations. Polyhedral systems (Pouchet et al.,
2011) are able to express all possible distinct loop transformations where the array indices, con-
ditionals and loop bounds are a�ne functions of the surrounding loop indices. However, the
polyhedral model is not applicable to (or intended for) one-dimensional �lter-like operations
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where the size of the result array depends on the source data. �e polyhedral model has been
extended to support arbitrary indexing (Venkat et al., 2014), as well as conditional control �ow
that is predicated on arbitrary (ie, non-a�ne) functions of the loop indices (Benabderrahmane
et al., 2010). In both of these extensions, the indices used to write into the destination array
must still be computed with a�ne functions. In the loop that performs array �ltering from
Listing 7.2, the index into the destination array is not a�ne. Zhao et al. (2018) have extended
the polyhedral model to allow data-dependent upper bounds on loops by overapproximating
the iteration space. In this extension, the loop bound must still be known before evaluation
of the loop can start. In our array �ltering example, the length of the result of the �lter oper-
ation is not known until a�er the entire input array has been read. �e fact that the length is
monotonically increasing in the �lter operation is crucial to understanding why the two can
be fused, but this fact is not captured by the polyhedral model.

To make use of the polyhedral model, we could implement a di�erent form of array �ltering
that returns an array of booleans of the same length as the input array. Each boolean would
denote whether the element is considered to be in the array. �is implementation of �lter
would allow fusion for our examples. However, this implementation of �lter has di�erent cost
characteristics when fusion does not occur. For a highly selective �lter that discards most of
the input array, any operations over the result of the �lter will still have to loop through the
entire inputs and test the corresponding boolean. Furthermore, operations like constant-time
indexing are not supported by this representation.

Ultimately, the job of an array fusion system is to make the program go as fast as possi-
ble on the available hardware. Although the cost metrics of “optimal” fusion systems try to
model the performance behavior of this hardware, it is not practical to encode the intricacies of
all available hardware in a single compiler implementation. Iterative compilation approaches
such as Ashby and O�Boyle (2006) instead enumerate many possible clusterings, use a cost
metric to rank them, and perform benchmark runs to identify which clustering actually per-
forms the best. An ILP formulation like ours naturally supports this model, as the integer
constraints de�ne the available clusterings, and the objective function can be used to rank
them.

7.7 F U T U R E W O R K

One obvious opportunity for further work in our clustering formulation is to improve selection
of combinators. Other combinators can currently be introduced as external computations, but
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this is not ideal as they will not be fused. We now present some ideas of how to support
common combinators in future work.

�e size inference rules for single-input map can be re-used for single-input combinators
that produce one output element for every input element, such as postscanl, prescanl, and
indexed. Extraction combinators, such as slice, take and drop, take a contiguous ‘slice’ of the
input. �ese could be implemented with an existential output size similar to the size inference
for filter. �e tail combinator, which discards the �rst element, could be implemented with
an existential output size as with (drop 1), or perhaps by adding a new size type to denote
‘decrementing’ a size type.

Implementing append would likely involve adding a new size type for appending two size
types together, similar to the result size of the cross combinator. Although the result size of
appending two concrete input arrays is commutative, the loops that generate the two halves of
the output cannot usually be interchanged. �e size type for appending two inputs therefore
should not be commutative. As we saw in Section 4.5.1 in the append2zip example, process
fusion can fuse two append processes with one shared input and two di�erent inputs into
a single process. To support this clustering, the de�nition of transducers would have to be
modi�ed to allow fusion between nodes with the same size type as one of the inputs and
nodes with the same size as the output. It may be simpler to implement append by introducing
an existential size type for both the iteration size and the output size; however, introducing an
existential for the output size hides the fact that appending two size types is an injection, and
may rule out some valid clusterings.

�e length combinator is unique, as it does not require the input array to be manifest, but
does require some array with the same rate to be manifest. For example, �nding the length of
the output of a �lter can only be done a�er the �lter is computed, while �nding the length of the
output of a map can o�en be done before the map is computed. Once length is implemented,
functions such as reverse can be implemented as a generate followed by a gather.

In future work, multiple-dimensional arrays could be supported by implementing seg-
mented streaming operations for operating on nested streams.
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C H A P T E R 8

C O N C L U S I O N

�is chapter discusses some directions for future work before concluding the thesis. �is
thesis has presented �ve di�erent ways to execute multiple queries concurrently, each with a
di�erent set of trade-o�s.

In Section 2.3 we saw how push streams can be used to execute multiple queries, so long
as the queries all operate over the same input. �ese queries were wri�en back-to-front and
the input stream must be manually duplicated whenever the input was used multiple times.

In Chapter 3 we introduced Icicle, an alternate presentation of push streams, using modal
types to ensure that all queries over a single shared input table can be fused together and
executed in a single pass. Here, values from the input stream can be shared among multiple
consumers without explicitly duplicating the stream.

In Section 2.4 we saw polarised streams, which are a careful combination of push streams
and pull streams that can be used execute multiple queries concurrently. Writing a group of
queries as polarised streams requires pu�ing all the queries together in a single data�ow graph,
then performing a manual polarity analysis on the graph, so that push or pull polarities can
be assigned to each edge of the data�ow graph.

In Chapter 4 we introduced process fusion, where a Kahn process network is used to ex-
ecute multiple queries; the processes are then fused together so the queries can be executed
as a single process, without communication overhead. Here, the queries require no polarity
analysis, and fusion is performed automatically. �e advantage of process fusion over Icicle
is that it supports multiple input streams. However, by supporting multiple input streams, we
lose the guarantee that all queries over the same input can be fused together.

In Section 4.6 we gave an overview of the mechanised proof of soundness of fusion, which
gives us con�dence in the correctness of the process fusion transform.

In Chapter 5 we evaluated the runtime performance of process fusion and saw that the
fused program was always at least two times faster than the compared streaming implementa-
tions, and usually between one and a half to two times faster than the compared array fusion
implementation.
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In Chapter 6 we compared process fusion with related work on fusion for streaming models
and data�ow languages.

Finally, in Chapter 7 we introduced clustering for array programs, a scheduling algorithm
for executing array programs in as few passes as possible. When the input data to the queries
�ts in memory as an array, we can perform multiple passes over the input data. Our clustering
algorithm �nds a schedule that minimises the number of array reads and writes, the number
of intermediate arrays, and the number of loops. It improves on prior work by supporting size-
changing operations, such as filter, which can be assigned to the same cluster as operations
that process the �ltered output array, as well as being able to be assigned to the same cluster
as operations that process the input array.

�e methods we have introduced are applicable in di�erent situations, depending on the
storage requirements of the dataset, and the kinds of queries to be executed. However, all
methods are designed to reduce program runtime by minimising streaming and iteration over-
head. If we wish to reduce runtime as much as possible, we cannot consider each query in
isolation. We must instead consider the queries as a whole, and perform inter-query optimisa-
tions: Icicle’s intermediate representation enables common subexpression elimination across
queries, process fusion can fuse a producer with consumers from all queries, and clustering
converts the dependency graph of all queries to an integer linear program. If we treat the
group of queries as a single streaming or array program, then this inter-query optimisation
corresponds to performing context-aware optimisations, as opposed to the purely local trans-
formations of shortcut fusion (Gill et al., 1993).

8.1 F U T U R E W O R K

We now take a brief look at the limitations and possible extensions of our work. We focus on
more conceptual extensions to process fusion here; some extensions to clustering to support
more combinators were discussed in Section 7.7.

8.1.1 Network fusion order and non-determinism

In the discussion of process fusion in Section 4.5.1, we saw that the order in which we fuse
the processes in a network can a�ect whether fusion succeeds or fails. We propose to solve
this in the future by modifying the fusion algorithm to be commutative and associative. �ese
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properties would allow us to apply fusion in any order, knowing that all orders produce the
same result.

�e fusion algorithm is not commutative because when two processes are trying to execute
instructions which could occur in either order, the algorithm must choose only one instruction.
�e fusion algorithm applies some heuristics to decide which instruction to execute �rst, but
when evaluating the processes as a process network, the choice is non-deterministic. Fusion
commits too early to a particular interleaving of the instructions from each process, when there
are many possible interleavings that would work. By explicitly introducing non-determinism
in the fused process, we could represent all possible interleavings, and would not have to
commit to one too early. We want to stop the fusion algorithm from commi�ing to a scheduling
decision too early, and allow the result process to represent all possible schedules.

Reifying the non-determinism in the processes will mean that all fusion orders produce
the same process at the end. Fusing the whole network in di�erent orders will not a�ect the
result, or whether processes can be fused together. �e order in which the whole network is
fused does a�ect the intermediate process, though, and some fusion orders may produce larger
intermediate processes. Two unconnected processes, which read from di�erent streams, can
execute without coordinating with each other. If we fuse these two unconnected processes
together, at every step the fused result process can non-deterministically choose which source
process to execute. In this case, the number of distinct states for the result process is the
cross product of the states in each source process. Fusing connected processes, for example a
producer and a consumer, introduce less non-determinism because there are times when only
one of the processes can run. When the consumer is waiting for a value, only the producer can
run. With less non-determinism, the result process is likely to be smaller. We suspect that, in
general, fusing connected processes will produce a smaller process than fusing unconnected
processes. �e size of the overall result for the entire network is the same, but the intermediate
process will be smaller. Larger intermediate programs generally take longer to compile, so
some heuristic order which fuses connected processes is likely to be useful, even if the order
does not a�ect the result.

�e advantage of Kahn process networks is that they guarantee a deterministic result, de-
spite the non-deterministic evaluation order. To retain deterministic results, non-determinism
must be restricted to only occur in the processes generated by the fusion algorithm, and not
in the input processes de�ned by the user. Because the fusion algorithm is essentially a static
application of the runtime evaluation rules, any non-determinism introduced by the fusion
algorithm will still compute a deterministic result.



204 C O N C L U S I O N

8.1.2 Conditional branching and fusion

In the process fusion algorithm, case instructions, which perform conditional branching, are
simply copied to the result process. However, if both input processes branch on the same
condition, we should be able to statically infer that, for example, if the �rst process takes the
true branch, the second process should also take the true branch.

Consider the following list program, which �lters the input list twice, with both �lters
using the same predicate:

filter2 :: [Int] → [(Int,Int)]

filter2 input =

let xs = filter (λi → i > 5) input

ys = filter (λi → i > 5) input

xys = zip xs ys

in xys

If we interpret this program as a process network and try to perform fusion, the fusion
algorithm fails, erroneously suggesting that the process network requires an unbounded bu�er
or multiple passes over the input list. �is failure would be legitimate if the two �lter predicates
were di�erent. However, when the predicates are the same, it is possible to execute with a
single loop and no bu�ers: if the input value used by xs is greater than �ve, then the input
value used by ys is also greater than �ve.

Rather than extend the fusion algorithm to track which case conditions are true at each
given label, we propose to implement a separate post-processing pass to perform branch sim-
pli�cation on the fused process. In the filter2 example, the fusion algorithm returns a fusion
failure instead of a fused process. Implementing this extension as a separate pass would re-
quire modifying the fusion algorithm to still return the complete fused process when it detects
a potential deadlock; potential deadlocks could be recorded in the result process with a new in-
struction. A�er fusing all the processes together, simplifying the result process, and removing
unreachable instructions, we would check whether any deadlock instructions are reachable; if
so, we trigger a fusion failure as before.

8.2 C O N C L U S I O N

�e techniques presented in this thesis have real, practical applications. If datasets continue to
grow faster than memory and hard drives, then the concurrent execution of streaming queries
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will only become more important. In the production use of Icicle, some of our datasets are
large enough that the data must be distributed across many computers. For these distributed
datasets, the time required to read the data prohibits us from performing each query as a
separate pass. Being able to perform multiple concurrent queries in a single pass allows us to
perform more sophisticated analyses, and in turn make more valuable inferences.

E�cient execution of concurrent queries — both streaming and array — has the obvious
bene�t of providing more immediate answers, while also requiring less power. For distributed
workloads, e�cient execution means that fewer computers are required to compute the an-
swers in a reasonable amount of time, which directly in�uences the cost of computing.
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C H A P T E R A

B E N C H M A R K C O D E

�is appendix includes the implementations of benchmark programs that were mentioned
previously in Chapter 5, but were not shown there.

priceAnalysesPipes (fpStock,fpMarket) =
(,) <$> priceOverTime fpStock <∗> priceOverMarket fpStock fpMarket

priceOverTime fpStock =
Fold.purely P.fold Stats.regressionCorrelation $ go

where
go
= sourceRecords fpStock
P.>→ P.map (λs → (daysSinceEpoch $ time s, cost s))

priceOverMarket :: FilePath → FilePath → IO Double
priceOverMarket fpStock fpMarket =
Fold.purely P.fold Stats.regressionCorrelation $ go

where
go
= joinBy (λs m → time s `compare` time m)

(sourceRecords fpStock)
(sourceRecords fpMarket)

P.>→ P.map (λ(s,m) → (cost s, cost m))

Listing A.1: Pipes two-pass implementation of priceAnalyses
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priceAnalysesStreaming (fpStock,fpMarket) = do
(pom S.:> (pot S.:> (),_)) ← priceOverMarket

(S.store priceOverTime $ sourceRecords fpStock)
(sourceRecords fpMarket)

return (pot,pom)

priceOverTime stock
= Fold.purely S.fold Stats.regressionCorrelation
$ S.map (λs → (daysSinceEpoch (time s), cost s)) stock

priceOverMarket stock market
= Fold.purely S.fold Stats.regressionCorrelation
$ S.map (λ(s,m) → (cost s, cost m))
$ joinBy (λs m → time s `compare` time m)
stock market

Listing A.2: Streaming implementation of priceAnalyses

quickhull :: (Vector Point → IO (Point,Point))
→ (Line → Vector Point → IO (Point, Vector Point))
→ Vector Point
→ IO (Vector Point)

quickhull fPivots fFilterMax ps0
| null ps0 =
return empty
| otherwise = do
(l,r) ← fPivots ps0
top ← go l r ps0
bot ← go r l ps0
return (singleton l ++ top ++ singleton r ++ bot)

where
go l r ps
| null ps =
return empty
| otherwise = do
(pt,above) ← fFilterMax (l,r) ps
left ← go l pt above
right ← go pt r above
return (left ++ singleton pt ++ right)

Listing A.3: �ickhull skeleton parameterised by �lterMax and pivots
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filterMaxHand l ps
| Unbox.length ps == 0
= return ((0,0), Unbox.empty)
| otherwise = do
mv ← MUnbox.unsafeNew $ Unbox.length ps
(x,y,wix) ← go0 mv
v ← Unbox.unsafeFreeze $ MUnbox.unsafeSlice 0 wix mv
return ((x,y), v)

where
{−# INLINE go0 #−}
go0 !mv = do
let (x0,y0) = Unbox.unsafeIndex ps 0
let d0 = distance (x0,y0) l
case d0 > 0 of
True → do
MUnbox.unsafeWrite mv 0 (x0,y0)
go mv 1 1 x0 y0 d0

False → do
go mv 1 0 x0 y0 d0

{−# INLINE go #−}
go !mv !ix !writeIx !x1 !y1 !d1
= case ix ≥ Unbox.length ps of

True → return (x1,y1, writeIx)
False → do
let (x2,y2) = Unbox.unsafeIndex ps ix
let d2 = distance (x2,y2) l
case d2 > 0 of
True → do
MUnbox.unsafeWrite mv writeIx (x2,y2)
case d1 > d2 of
True → go mv (ix + 1) (writeIx + 1) x1 y1 d1
False → go mv (ix + 1) (writeIx + 1) x2 y2 d2

False →
case d1 > d2 of
True → go mv (ix + 1) writeIx x1 y1 d1
False → go mv (ix + 1) writeIx x2 y2 d2

Listing A.4: Hand-fused implementation of filterMax
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filterMaxVectorRecompute l ps
= let annot1 = Unbox.map (λp → (p, distance p l)) ps

point = fst
$ Unbox.maximumBy (compare `on` snd) annot1

annot2 = Unbox.map (λp → (p, distance p l)) ps
above = Unbox.map fst

$ Unbox.filter ((>0) ◦ snd) annot2
in return (point, above)

Listing A.5: Vector recomputed distances implementation of filterMax

filterMaxPipes l ps = do
r ← MUnbox.unsafeNew (Unbox.length ps)
ix ← newIORef 0
pt ← newIORef (0,0)
P.runEffect (sourceVector ps P.>→

annot P.>→
filterAndMax r ix pt 0 (0,0) (-1/0))

pt' ← readIORef pt
ix' ← readIORef ix
r' ← Unbox.unsafeFreeze $ MUnbox.unsafeSlice 0 ix' r
return (pt', r')
where
annot = P.map (λp → (p, distance p l))

filterAndMax !vecR !ixR !ptR !ix (!x,!y) !d1 = do
lift $ writeIORef ixR ix
lift $ writeIORef ptR (x,y)
(p2,d2) ← P.await
let (!p',!d') = if d1 > d2 then ((x,y),d1) else (p2,d2)
case d2 > 0 of
True → do
lift $ MUnbox.unsafeWrite vecR ix p2
filterAndMax vecR ixR ptR (ix+1) p' d'

False → do
filterAndMax vecR ixR ptR ix p' d'

Listing A.6: Pipes implementation of filterMax
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compressorVector :: Vector Double → IO (Vector Double)
compressorVector ins = do
let squares = Unbox.map (λx → x ∗ x) ins
let avg = Unbox.postscanl' lop 0 squares
let mul = Unbox.map clip avg
let out = Unbox.zipWith (∗) mul ins
return out

Listing A.7: Vector implementation of compressor

compressorLopVector :: Vector Double → IO (Vector Double)
compressorLopVector ins = do
let lopped = Unbox.postscanl' lop20k 0 xs
let squares = Unbox.map (λx → x ∗ x) lopped
let avg = Unbox.postscanl' expAvg 0 squares
let root = Unbox.map clipRoot avg
let out = Unbox.zipWith (∗) root lopped
return out

Listing A.8: Vector implementation of compressor with low-pass

append2Conduit in1 in2 out =
C.runConduit (sources C.. | sinks)

where
sources = sourceFile in1 >> sourceFile in2

sinks = do
(i,_) ← C.fuseBoth (counting 0) (sinkFile out)
return i

counting i = do
e ← C.await
case e of
Nothing → return i
Just v → do
C.yield v
counting (i + 1)

Listing A.9: Conduit implementation of append2
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append2Pipes in1 in2 out = do
h ← IO.openFile out IO.WriteMode
i ← P.runEffect $ go h
IO.hClose h
return i
where
go h =
let ins = sourceFile in1 >> sourceFile in2

ins' = counting ins 0
outs = sinkHandle h

in ins' P.>→ outs

counting s i = do
e ← P.next s
case e of
Left _end → return i
Right (v,s') → do
P.yield v
counting s' (i + 1)

Listing A.10: Pipes implementation of append2
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append2Hand in1 in2 out = do
f1 ← IO.openFile in1 IO.ReadMode
f2 ← IO.openFile in2 IO.ReadMode
h ← IO.openFile out IO.WriteMode
i ← go1 h f1 f2 0

IO.hClose f1
IO.hClose f2
IO.hClose h
return i

where
go1 h f1 f2 lns = do
f1' ← IO.hIsEOF f1
case f1' of
True → go2 h f2 lns
False → do
l ← Char8.hGetLine f1
Char8.hPutStrLn h l
go1 h f1 f2 (lns + 1)

go2 h f2 lns = do
f2' ← IO.hIsEOF f2
case f2' of
True → return lns
False → do
l ← Char8.hGetLine f2
Char8.hPutStrLn h l
go2 h f2 (lns + 1)

Listing A.11: Hand-fused implementation of append2

append2Streaming in1 in2 out = do
sinkFile out $ go (sourceFile in1) (sourceFile in2)

where
go s1 s2 = S.store S.length_ $ (s1 >> s2)

Listing A.12: Streaming implementation of append2
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part2Pipes in1 out1 out2 = do
o1 ← IO.openFile out1 IO.WriteMode
o2 ← IO.openFile out2 IO.WriteMode
ref ← newIORef (0,0)
P.runEffect (sourceFile in1 P.>→ go ref o1 o2 0 0)
IO.hClose o1
IO.hClose o2
readIORef ref
where

go ref o1 o2 !c1 !c2 = do
lift $ writeIORef ref (c1, c2)
v ← P.await
case () of
_
| prd v → do
lift $ Char8.hPutStrLn o1 v
go ref o1 o2 (c1 + 1) c2
| otherwise → do
lift $ Char8.hPutStrLn o2 v
go ref o1 o2 c1 (c2 + 1)

prd l = ByteString.length l `mod` 2 == 0

Listing A.13: Pipes implementation of part2
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part2Hand in1 out1 out2 = do
f1 ← IO.openFile in1 IO.ReadMode
o1 ← IO.openFile out1 IO.WriteMode
o2 ← IO.openFile out2 IO.WriteMode
r ← go f1 o1 o2 0 0
IO.hClose f1
IO.hClose o1
IO.hClose o2
return r

where
go i1 o1 o2 c1 c2 = do
i1' ← IO.hIsEOF i1
case i1' of
True → return (c1, c2)
False → do
l ← Char8.hGetLine i1
case ByteString.length l `mod` 2 == 0 of
True → do

Char8.hPutStrLn o1 l
go i1 o1 o2 (c1 + 1) c2

False → do
Char8.hPutStrLn o2 l
go i1 o1 o2 c1 (c2 + 1)

Listing A.14: Hand implementation of part2
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partitionAppendV2Loop :: Unbox.Vector Int → IO (Unbox.Vector Int)
partitionAppendV2Loop !xs = do
let (evens,odds) = Unbox.partition (λi → i `mod` 2 == 0) xs
let evens' = Unbox.map (λi → i `div` 2) evens
let odds' = Unbox.map (λi → i ∗ 2) odds
let apps = evens' Unbox.++ odds'
return apps

partitionAppendV2Source :: Unbox.Vector Int → IO (Unbox.Vector Int)
partitionAppendV2Source !xs = do
let p i = i `mod` 2 == 0
let evens = Unbox.filter p xs
let odds = Unbox.filter (not ◦ p) xs
let evens' = Unbox.map (λi → i `div` 2) evens
let odds' = Unbox.map (λi → i ∗ 2) odds
let apps = evens' Unbox.++ odds'
return apps

Listing A.15: Vector implementations of partitionAppend
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