Machine Fusion is not Associative (or Commutative)

Ben Lippmeier, Amos Robinson

Shonan Meeting
Functional Stream Libraries and Fusion 2018/10/22

FilterMax

FilterMax

FilterMax

FilterMax

FilterMax

FilterMax


```
filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec1
    = let vec2 = map (+ 1) vec1
        vec3 = filter (> 0) vec2
    n = fold max 0 vec3
    in (vec3, n)
```

```
filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec1
    = let vec2 = map (+ 1) vec1
        vec3 = filter (> 0) vec2
    n = fold max 0 vec3
    in (vec3, n)
```

map $f=$ unstream . mapS f . stream
filter $\mathrm{p}=$ unstream . filterS p . stream
fold f $z=$ foldS f z . stream

```
filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec1
    = let vec2 = unstream (mapS (+ 1) (stream vec1))
    vec3 = unstream (filterS (> 0) (stream vec2))
    n = foldS max 0 (stream vec3)
    in (vec3, n)
```

```
map f = unstream . mapS f . stream
filter p = unstream . filterS p . stream
fold f z = foldS f z . stream
```

```
filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec1
    = let
        vec3 = unstream (filters (> 0)
        (stream (unstream (mapS (+ 1)
                                    (stream vec1)))))
    n = foldS max 0 (stream vec3)
    in (vec3, n)
```

```
map f = unstream . mapS f . stream
filter p = unstream . filterS p . stream
fold f z = foldS f z . stream
```

```
filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec1
    = let
        vec3 = unstream (filterS (> 0)
        (stream (unstream (mapS (+ 1)
                                    (stream vec1)))))
    n = foldS max 0 (stream vec3)
    in (vec3, n)
```

```
filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec1
    = let
        vec3 = unstream (filterS (> 0)
                (stream (unstream (mapS (+ 1)
                                    (stream vec1)))))
    n = foldS max 0 (stream vec3)
    in (vec3, n)
```

RULE "stream/unstream"
forall xs. stream (unstream xs) = xs

```
filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec1
    = let
        vec3 = unstream (filterS (> 0)
                (stream (unstream (mapS (+ 1)
                                    (stream vec1)))))
    n = foldS max 0 (stream vec3)
    in (vec3, n)
```

RULE "stream/unstream"
forall xs. stream (unstream xs) = xs

```
filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec1
    = let
    vec3 = unstream (filters (> 0) (mapS (+ 1)
                                    (stream vec1)))
    n = foldS max 0 (stream vec3)
    in (vec3, n)
```

```
filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec1
    = let
    vec3 = unstream (filters (> 0) (mapS (+ 1)
                                    (stream vec1)))
    n = foldS max 0 (stream vec3)
    in (vec3, n)
```

```
filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec1
    = let
        vec3 = unstream (filters (> 0) (mapS (+ 1)
                                (stream vec1)))
        n = foldS max 0 (stream vec3)
    in (vec3, n)
```



```
filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec1
    = let
        vec3 = unstream (filterS (> 0) (mapS (+ 1)
                                    (stream vecl)))
                                n = foldS max 0 (stream vec3)
    in (vec3, n)
```



```
uniquesUnion :: Vector Nat -> Vector Nat
    -> (Vector Nat, Vector Nat)
uniquesUnion sIn1 sIn2
    = let sUnique = group sIn1
            sMerged = merge sIn1 sIn2
            sUnion = group sMerged
    in (sUnique, sUnion)
```



```
uniquesUnion :: Vector Nat -> Vector Nat
    -> (Vector Nat, Vector Nat)
uniquesUnion sIn1 sIn2
    = let sUnique = group sIn1
            sMerged = merge sIn1 sIn2
            sUnion = group sMerged
    in (sUnique, sUnion)
```


f : : Stream (Int, Int) -> (Int, Int)
 $\mathrm{f} \mathrm{s}=$ let $\mathrm{al}=\mathrm{sum}(\operatorname{map} \mathrm{fst} \mathrm{s})$
 a2 $=\operatorname{prod}(\operatorname{map}$ snd $s)$
 in (a1, a2)

$$
\begin{gathered}
\mathrm{f}:: \text { Stream (Int, Int) }->\text { (Int, Int) } \\
\mathrm{f}=\operatorname{let} \mathrm{a}=\operatorname{sum}(\operatorname{map} \text { fst } \mathrm{s}) \\
\mathrm{a} 2=\operatorname{prod}(\operatorname{map} \text { snd } \mathrm{s}) \\
\operatorname{in~}(\mathrm{a} 1, \mathrm{a} 2)
\end{gathered}
$$

- Cannot implement lazy unzip with sequential execution semantics in a space efficient way. - Noticed by John Hughes in his PhD thesis (1983)
- Told to me by Peter Gammie
- Pattern arises frequently in vectorised code from DPH. We often combine a single segment descriptor or selector vector with many data vectors.

Problem

Short-cut stream fusion cannot fuse a producer into multiple consumers

Problem'

Pull stream model does not support space efficient unzip
 Push stream model does not support space efficient zip
 (a pleasing* duality)

*only pleasing in theory, not in practice.

We need both Pull and Push (or maybe neither)

```
group
    = \lambda (sIn1: Stream Nat) (sOut1: Stream Nat).
    v (f: Bool) (l: Nat) (v: Nat) (A0..A3: Label).
    process
    { ins: { sIn1 }
    , outs: { sOut1 }
    , heap: {f=T,l=0,v=0 }
    , label: A0
    , instrs: { A0 = pull sIn1 v A1 []
    , A1 = case (f || (l /= v)) A2 [] A3 []
    ,A2 = push sOut1 v A3 [ l = v,f = F ]
    , A3 = drop sIn1 A0 [] } }
```


merge
$=\lambda$ (sIn1: Stream Nat) (sIn2: Stream Nat) (sOut2: Stream Nat).
v (x 1 : Nat) ($\mathrm{x} 2:$ Nat) (B0..E2: Label).
process
\{ ins: \{ sIn1, sIn2 \}
, outs: \{ sOut2 \}
, heap: $\{x 1=0, x 2=0\}$
, label: B0


```
process
{ ins: { sIn1, sIn2 }
, outs: { sOut1, sOut2 }
, heap: {f = T, l = 0, v = 0, x1 = 0, x2 = 0, b1 = 0 }
    label: F0
    instrs:
    { F0 = pull sIn1 b1 F1 [ ]
    , F1 = jump
    F2 [ v = b1 ]
    , F2 = jump F3 [ x1 = b1 ]
    , F3 = case (f || (l /= v)) F4 [ ] F5 [ ]
    , F4 = push sOut1 v F5 [ l = v, f = F ]
    , F5 = jump
    , F6 = pull sIn2 x2
    , F7 = case (x1 < x2)
    F8 [ ] F16[ ]
F7 = ((A0,{sln 1 = none )). (C0, {sln 1 = have, slm2 = havel))
    , F8 = push sOut2 x1
    F9 [ ]
    , F9 = drop sIn1 F10[ ]
    , F10= pull sIn1 b1 F11 [ ]
    , F11 = jump
    F12[ v = b1 ]
    , F12 = jump
    F13 [ x1 = b1 ]
    , F13 = case (f || (l /= v)) F14 [ ] F15 [ ]
F13 = ((A1,{(sln 1 = have)). (C0, {sln 1 = have, sln 2 = have))
    , F14 = push sOut1 v F15[ l = v, f = F ]
    , F15 = jump
F7 [ ]
\begin{tabular}{|c|c|c|c|}
\hline F8 & \(=((A 0,\{\sin 1=\) none \(\})\), & (D0, \(\{\sin 1=\) have, & \(\operatorname{sln} 2=\) have \})) \\
\hline F9 & \(=((\mathrm{A} 0,\{\mathrm{~s} \ln 1=\) none \()\) ), & (D1, \(\{\sin 1=\) none, & \(\sin 2=\) have f)) \\
\hline F10 & \(=((\mathrm{A} 0,\{\sin 1=\) none \(\})\), & (D2, \{ \(\sin 1=\) none, & \(\operatorname{sln} 2=\) have \})) \\
\hline F11 & \(=((\mathrm{A} 0,\{\mathrm{~s} \ln \mathrm{l}=\) pending \(\}\) & D2, \(\{\operatorname{sln} 1=\) pend & \(\ln 2=\) have \(\}\) )) \\
\hline F12 & \(=((\mathrm{Al},[\mathrm{s} \ln 1=\) have \(])\), & (D2, \(\{\sin 1=\) pend & In2 = have ])) \\
\hline F13 & \(=((A 1,\{\sin 1=\) have \()\) ) & (C0, \(\{\sin 1=\) have, & \(\operatorname{sln} 2=\) have \})) \\
\hline F14 & \(=((A 2,\{\sin 1=\) have \(])\), & (C0, \(\{\operatorname{sln} 1=\) have, & \(\operatorname{sln} 2=\) have \})) \\
\hline F15 & \(=((A 3,\{\sin 1=\) have \()\) ). & ( \(\mathrm{CO}, 2 \mathrm{f} \sin \mathrm{l}=\) have, & \(s \ln 2=\) have f) \()\) \\
\hline
\end{tabular}
    , F16 = push sOut2 x2
F17 [ ]
F16 = ((A0,{s\operatorname{ln}|=none }),\quad(E0,{s\operatorname{ln}|=\mathrm{ have, }\quad\operatorname{sin}2=\mathrm{ have }}))
    F17 = drop sIn2 F18 [ ]
    , F18= pull sIn2
F7 [ ]
F0 = ((A0,{sml = none )), (B0, {sln 1 = none, slm2 = nonel))
F1 =((A0,{sln 1 = pending)),(B0, {sln 1 = pending, sln2 = none}))
F2 = ((A1,{sInI = have}),
(B0, {s\operatorname{ln}1= pending, s\operatorname{ln}2= none}))
F3 = ((A1,{s\operatorname{ln}1=\mathrm{ have }}),\quad(B1,{s\operatorname{ln}1=\mathrm{ have, }\quads\operatorname{ln}2=none } ))
F6 [ ]
F7 [ ]
\(\mathrm{F} 4=((\mathrm{A} 2,\{\sin 1=\) have \(\})\),
                                    (B1, {s\operatorname{ln}1=\mathrm{ have, }\quad\operatorname{ln}2=\mathrm{ none }))}
F5 =((A3,[sIn] = have]),
(B1, {sIn 1 = have,
sln2 = none]))
F6 = ((A0,{sIn 1 = none }),
(B1, {s\operatorname{ln}1=\mathrm{ have, }\quad\operatorname{sIn}2=none}))
F11 = ((A0,{s\operatorname{In}1=\mathrm{ pending }),(D2, {s向 }1=\mathrm{ pending, }\textrm{s}\operatorname{In}2=\mathrm{ have }}))
```



```
F17 = ((A0,{s\operatorname{ln}1=n\mp@code{none }), (E1, {s\operatorname{ln 1 = have, }\quad\textrm{s}\operatorname{ln}2= have })})
F18 = ((A0,{s\operatorname{ln}1=none}),\quad(E2,{s\operatorname{ln}1=\mathrm{ have, }\quad\operatorname{sin}2=none}))
} }
```


where

$$
\left.\begin{array}{ll}
\mathrm{F} 0=((\mathrm{A} 0,\{\operatorname{sIn} 1=\text { none }\}), & (\mathrm{B} 0,\{\operatorname{sIn} 1=\text { none }, \\
\mathrm{F} 1=((\mathrm{A} 0,\{\operatorname{sIn} 1=\text { pending } 2=\text { none }\})) \\
\mathrm{F} 2=(\mathrm{B} 0,\{\operatorname{sIn} 1=\text { pending }, & \operatorname{sIn} 2=\text { none }\})) \\
\mathrm{F} 2=((\mathrm{A} 1,\{\operatorname{sIn} 1=\text { have }\}), & (\mathrm{B} 0,\{\operatorname{sIn} 1=\text { pending }, \\
\operatorname{sIn} 2=\text { none }\})) \\
\mathrm{F} 3=((\mathrm{A} 1,\{\operatorname{sIn} 1=\text { have }\}), & (\mathrm{B} 1,\{\operatorname{sIn} 1=\text { have }, \\
\operatorname{sIn} 2=\text { none }\})
\end{array}\right)
$$

where

$$
\begin{aligned}
\mathrm{p} & =\mathrm{f} \|(1 /=\mathrm{v}) \\
\mathrm{F} 3 & =((\mathrm{A} 1,\{\operatorname{sIn} 1=\text { have }\}),(\mathrm{B} 1,\{\operatorname{sIn} 1=\text { have, sOut2 }=\text { none }\})) \\
\mathrm{F} 4 & =((\mathrm{A} 2,\{\sin 1=\text { have }\}),(\mathrm{B} 1,\{\operatorname{sIn} 1=\text { have, sOut2 }=\text { none }\})) \\
\mathrm{F} 5 & =((\mathrm{A} 3,\{\operatorname{sIn} 1=\text { have }\}),(\mathrm{B} 1,\{\operatorname{sIn} 1=\text { have, sOut } 2=\text { none }\})) \\
\mathrm{F} 6 & =((\mathrm{A} 3,\{\operatorname{sIn} 1=\text { have }\}),(\mathrm{C} 0,\{\operatorname{sIn} 1=\text { have, sOut } 2=\text { have }\}))
\end{aligned}
$$

where

$$
\begin{aligned}
\mathrm{p} & =\mathrm{f} \|(1 /=\mathrm{v}) \\
\mathrm{F} 3 & =((\mathrm{A} 1,\{\sin 1=\text { have }\}),(\mathrm{B} 1,\{\operatorname{sIn} 1=\text { have, sOut } 2=\text { none }\})) \\
\mathrm{F} 4 & =((\mathrm{A} 2,\{\sin 1=\text { have }\}),(\mathrm{B} 1,\{\operatorname{sIn} 1=\text { have, sOut } 2=\text { none }\})) \\
\mathrm{F} 5 & =((\mathrm{A} 3,\{\sin 1=\text { have }\}),(\mathrm{B} 1,\{\operatorname{sIn} 1=\text { have, sOut } 2=\text { none }\})) \\
\mathrm{F} 6 & =((\mathrm{A} 3,\{\operatorname{sIn} 1=\text { have }\}),(\mathrm{C} 0,\{\operatorname{sIn} 1=\text { have, sOut } 2=\text { have }\}))
\end{aligned}
$$

- Could also do the pull first...
tryStep : (Channel \mapsto ChannelType2) \rightarrow LabelF \rightarrow Instruction \rightarrow LabelF \rightarrow Maybe Instruction tryStep cs $\left(l_{p}, s_{p}\right) i_{p}\left(l_{q}, s_{q}\right)=$ match i_{p} with
jump (l^{\prime}, u^{\prime})
\rightarrow Just (jump $\left.\left(\left(l^{\prime}, s_{p}\right),\left(l_{q}, s_{q}\right), u^{\prime}\right)\right)$
case $e\left(l_{t}^{\prime}, u_{t}^{\prime}\right)\left(l_{f}^{\prime}, u_{f}^{\prime}\right)$
\rightarrow Just (case $\left.e\left(\left(l_{t}^{\prime}, s_{p}\right),\left(l_{q}, s_{q}\right), u_{t}^{\prime}\right)\left(\left(l_{f}^{\prime}, s_{p}\right),\left(l_{q}, s_{q}\right), u_{f}^{\prime}\right)\right)$
push $c e\left(l^{\prime}, u^{\prime}\right)$
$\mid c s[c]=$ out 1
\rightarrow Just (push ce e (l^{\prime}, s_{p}), $\left.\left.\left(l_{q}, s_{q}\right), u^{\prime}\right)\right)$
$\mid c s[c]=$ in1out1 $\wedge s_{q}[c]=$ none $_{F}$
\rightarrow Just (push ce e ($\left.l^{\prime}, s_{p}\right),\left(l_{q}, s_{q}\left[c \mapsto \operatorname{pending}_{F}\right]\right), u^{\prime}[$ chan $\left.\left.c \mapsto e]\right)\right)$
pull $c x\left(l_{o}^{\prime}, u_{o}^{\prime}\right)\left(l_{c}^{\prime}, u_{c}^{\prime}\right)$
$\mid c s[c]=\mathrm{in} 1$
\rightarrow Just (pull cx $\left.\left(\left(l_{o}^{\prime}, s_{p}\right),\left(l_{q}, s_{q}\right), u_{o}^{\prime}\right)\left(\left(l_{c}^{\prime}, s_{p}\right),\left(l_{q}, s_{q}\right), u_{c}^{\prime}\right)\right)$
$\mid(c s[c]=$ in2 $\vee c s[c]=$ in1out1 $) \wedge s_{p}[c]=$ pending $_{F}$
\rightarrow Just (jump ($\left(l_{o}^{\prime}, s_{p}\left[c \mapsto\right.\right.$ have $\left.\left._{F}\right]\right),\left(l_{q}, s_{q}\right), u_{o}^{\prime}[x \mapsto$ chan $\left.c]\right)$)
$\mid(c s[c]=\operatorname{in2} \vee c s[c]=$ in1out1 $) \wedge s_{p}[c]=\operatorname{closed}_{F}$
\rightarrow Just (jump $\left.\left(\left(l_{c}^{\prime}, s_{p}\right),\left(l_{q}, s_{q}\right), u_{c}^{\prime}\right)\right)$
$\mid c s[c]=\operatorname{in2} \wedge s_{p}[c]=$ none $_{F} \wedge s_{q}[c]=$ none $_{F}$
(SharedPullInject)
\rightarrow Just (pull c (chan c)

$$
\begin{aligned}
& \left(\left(l_{p}, s_{p}\left[c \mapsto \operatorname{pending}_{F}\right]\right),\left(l_{q}, s_{q}\left[c \mapsto \operatorname{pending}_{F}\right]\right),[]\right) \\
& \left.\left(\left(l_{p}, s_{p}\left[c \mapsto \operatorname{closed}_{F}\right]\right),\left(l_{q}, s_{q}\left[c \mapsto \operatorname{closed}_{F}\right]\right),[]\right)\right)
\end{aligned}
$$

Stock Price Graph

data Record $=$ Record
\{ time : : Time
, price :: Double \}

```
priceAnalyses :: [Record] }->\mathrm{ [Record] }->\mathrm{ ((Line, Double), (Line, Double))
priceAnalyses stock index =
    let pot = priceOverTime stock
        pom = priceOverMarket stock index
    in (pot, pom)
priceOverTime :: [Record] }->\mathrm{ (Line, Double)
priceOverTime stock =
    let timeprices = map ( }\lambdar->\mathrm{ (daysSinceEpoch (time r), price r)) stock
    in (regression timeprices, correlation timeprices)
priceOverMarket :: [Record] }->\mathrm{ [Record] }->\mathrm{ (Line, Double)
priceOverMarket stock index =
    let joined = join ( }\lambda\mathrm{ s i }->\mathrm{ time s `compare` time i) stock index
        prices = map ( }\lambda(\textrm{s},\textrm{i})->(\mathrm{ price s, price i)) joined
    in (regression prices, correlation prices)
```



```
partitionAppendFailure :: Vector Int }->\mathrm{ IO (Vector Int)
partitionAppendFailure xs = do
    (apps,()) \leftarrow vectorSize xs $ \lambdasnkApps }
    $$(fuse $ do
\begin{tabular}{|c|c|c|c|}
\hline \(\times 0\) & \(\leftarrow\) source & [|sourceOfVector \(x\) & xs \\
\hline (evens, odds) & \(\leftarrow\) partition & \([\mid \lambda i \rightarrow\) even i & ] x 0 \\
\hline evens' & \(\leftarrow\) map &  & \(1]\) evens \\
\hline odds' & \(\leftarrow\) map & [| \(\lambda \mathrm{i} \rightarrow \mathrm{i} * 2\) & \(1]\) odds \\
\hline apps & \(\leftarrow\) append e & ' ' odds' & \\
\hline sink apps & & [|snkApps & |]) \\
\hline
\end{tabular}
```

return apps

bench/Bench/PartitionAppend/Folderol.hs:18:8: warning:
Maximum process count exceeded: there are 2 processes after fusion. Inserting unbounded communication channels between remaining processes.

Input process network (4 processes):
() ->-\{sourceOfVector xs\}--> C0

C0 ->-----(partition)------> C1 C2
C1 ->--------(map)---------> C3
C2 ->--------(map)---------> C4
C3 C4 ->------(append)--------> C5
C5 ->------\{snkApps\}-------> ()

Partially fused process network (2 processes):
() ->-\{sourceOfVector xs\}--> C0

C0 ->-----(partition)------> C1 C2
C1 C2 ->-(map / map / append)-> C5
C5 ->------\{snkApps\}-------> ()

$$
\begin{aligned}
& \text { append2zip :: } \mathrm{a}] \rightarrow[\mathrm{a}] \rightarrow[\mathrm{a}] \rightarrow[(\mathrm{a}, \mathrm{a})] \\
& \text { append2zip a b c }= \\
& \text { let } \mathrm{ba}=\mathrm{b}+\mathrm{a} \\
& \mathrm{bc}=\mathrm{b}+\mathrm{c} \\
& \mathrm{z}=\mathrm{zip} \mathrm{ba} \mathrm{bc}
\end{aligned}
$$

$$
\begin{aligned}
& \text { append3 }::[a] \rightarrow[a] \rightarrow[a] \rightarrow([a],[a],[a]) \\
& \text { append3 } \mathrm{a} \mathrm{~b} \mathrm{c}= \\
& \text { let } \mathrm{ab}=\mathrm{a}+\mathrm{b} \\
& \mathrm{ac}=\mathrm{a}+\mathrm{b} \\
& \mathrm{bc}=\mathrm{b}++\mathrm{c} \\
& \text { in }(\mathrm{ab}, \mathrm{ac}, \mathrm{bc})
\end{aligned}
$$

Fusion is neither Associative or Commutative.

- The access pattern of the result process depends on the order in which the source processes are fused.
- Not all orders produce a result process with an access pattern that can be fused with successive processes.
- We don't have a way to decide on the fusion order other than heuristics and trying all the orders.
- Will likely cause combinatorial explosion in pathological cases.
- How do we prune the search space, session types?

```
normalize2 :: Array Int -> (Array Int, Array Int)
normalize2 xs
\[
\begin{array}{rllll}
=\text { let sum1 } & =\text { fold } & (+) & 0 & \text { xs } \\
\text { gts } & =\text { filter } & (> & 0) & \text { xs } \\
\text { sum2 } & =\text { fold } & (+) & 0 & \text { gts } \\
\text { ys1 } & =\text { map } & & (/ \text { sum1) } & \text { xs } \\
\text { ys2 } & =\text { map } & & (/ \text { sum2) } & \text { xs } \\
\text { in (ys1, ys2) } & & &
\end{array}
\]
```


Minimise $25 \cdot x_{\text {sum } 1, \text { gts }}+1 \cdot x_{\text {sum } 1, \text { sum } 2}+25 \cdot x_{\text {sum } 1, y s 2}+$ $25 \cdot x_{g t s, s u m} 2+25 \cdot x_{g t s, y s 1}+1 \cdot x_{s u m 2, y s 1}+$ $25 \cdot x_{y s 1, y s 2}+5 \cdot c_{g t s}+5 \cdot c_{y s 1}+5 \cdot c_{y s 2}$
Subject to
$-5 \cdot x_{\text {sum } 1, \text { gts }}$
$-5 \cdot x_{\text {sum } 1, \text { sum } 2}$
$-5 \cdot x_{\text {sum } 1, y s 2}$
$-5 \cdot x_{\text {gts,ys } 1}$
$-5 \cdot x_{\text {sum } 2, y s 1}$
$-5 \cdot x_{y s 1, \text { ss } 2}$
$x_{g t s, s u m} 2 \leq \pi_{\text {sum } 2}-\pi_{g t s} \leq 5 \cdot x_{g t s, s u m} 2$

$$
\begin{aligned}
& \pi_{\text {sum } 1}<\pi_{y s 1} \\
& \pi_{\text {sum } 2}<\pi_{y s 2}
\end{aligned}
$$

$x_{\text {gts,sum } 2}$	$\leq c_{\text {gts }}$
$x_{\text {gts }, \text { sum } 2}$	$\leq x_{\text {sum } 1, \text { sum } 2}$
$x_{\text {sum } 1, \text { sum } 1}$	$\leq x_{\text {sum } 1, \text { sum } 2}$
$x_{\text {sum } 1, \text { gts }}$	$\leq x_{\text {sum } 1, \text { sum } 2}$

\bullet Pipelined with 1 join - -Parallel with 1 join - -Pipe/parallel without join

