
Machine Fusion is not Associative (or Commutative)

Ben Lippmeier, Amos Robinson

Shonan Meeting

Functional Stream Libraries and Fusion

2018/10/22

FilterMax

0

1

2

3

4

-1

-2

-3

-4

FilterMax

0

1

2

3

4

-1

-2

-3

-4

FilterMax

0

1

2

3

4

-1

-2

-3

-4

FilterMax

0

1

2

3

4

-1

-2

-3

-4

FilterMax

0

1

2

3

4

-1

-2

-3

-4

FilterMax

0

1

2

3

4

-1

-2

-3

-4

4

filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec1
 = let vec2 = map (+ 1) vec1
 vec3 = filter (> 0) vec2
 n = fold max 0 vec3
 in (vec3, n)

filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec1
 = let vec2 = map (+ 1) vec1
 vec3 = filter (> 0) vec2
 n = fold max 0 vec3
 in (vec3, n)

map f = unstream . mapS f . stream
filter p = unstream . filterS p . stream
fold f z = foldS f z . stream

filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec1
 = let vec2 = unstream (mapS (+ 1) (stream vec1))
 vec3 = unstream (filterS (> 0) (stream vec2))
 n = foldS max 0 (stream vec3)
 in (vec3, n)

map f = unstream . mapS f . stream
filter p = unstream . filterS p . stream
fold f z = foldS f z . stream

filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec1
 = let
 vec3 = unstream (filterS (> 0)
 (stream (unstream (mapS (+ 1)
 (stream vec1)))))
 n = foldS max 0 (stream vec3)
 in (vec3, n)

map f = unstream . mapS f . stream
filter p = unstream . filterS p . stream
fold f z = foldS f z . stream

filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec1
 = let
 vec3 = unstream (filterS (> 0)
 (stream (unstream (mapS (+ 1)
 (stream vec1)))))
 n = foldS max 0 (stream vec3)
 in (vec3, n)

filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec1
 = let
 vec3 = unstream (filterS (> 0)
 (stream (unstream (mapS (+ 1)
 (stream vec1)))))
 n = foldS max 0 (stream vec3)
 in (vec3, n)

RULE “stream/unstream”
 forall xs. stream (unstream xs) = xs

filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec1
 = let
 vec3 = unstream (filterS (> 0)
 (stream (unstream (mapS (+ 1)
 (stream vec1)))))
 n = foldS max 0 (stream vec3)
 in (vec3, n)

RULE “stream/unstream”
 forall xs. stream (unstream xs) = xs

filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec1
 = let
 vec3 = unstream (filterS (> 0) (mapS (+ 1)
 (stream vec1)))
 n = foldS max 0 (stream vec3)
 in (vec3, n)

filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec1
 = let
 vec3 = unstream (filterS (> 0) (mapS (+ 1)
 (stream vec1)))
 n = foldS max 0 (stream vec3)
 in (vec3, n)

filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec1
 = let
 vec3 = unstream (filterS (> 0) (mapS (+ 1)
 (stream vec1)))
 n = foldS max 0 (stream vec3)
 in (vec3, n)

map filter foldvec1 vec3 n
(> 0)(+ 1) (max)

(. , .)

filterMax :: Vector Int -> (Vector Int, Int)
filterMax vec1
 = let
 vec3 = unstream (filterS (> 0) (mapS (+ 1)
 (stream vec1)))
 n = foldS max 0 (stream vec3)
 in (vec3, n)

map filter foldvec1 n
(> 0)(+ 1) (max)

read back

(. , .)

vec3

groupsIn1

sIn2

merge group

sUnique

sUnion
sMerged

uniquesUnion :: Vector Nat -> Vector Nat
 -> (Vector Nat, Vector Nat)
uniquesUnion sIn1 sIn2
 = let sUnique = group sIn1  
 sMerged = merge sIn1 sIn2  
 sUnion = group sMerged
 in (sUnique, sUnion)

groupsIn1

sIn2

merge group

sUnique

sUnion
sMerged

uniquesUnion :: Vector Nat -> Vector Nat
 -> (Vector Nat, Vector Nat)
uniquesUnion sIn1 sIn2
 = let sUnique = group sIn1  
 sMerged = merge sIn1 sIn2  
 sUnion = group sMerged
 in (sUnique, sUnion)

[4,6,6,8,8] [4,6,8]

[4,5,7]

[4,4,5,6,6,7,8,8]
[4,5,6,7,8]

f :: Stream (Int, Int) -> (Int, Int)  
f s = let a1 = sum (map fst s)  
 a2 = prod (map snd s)  
 in (a1, a2)

f :: Stream (Int, Int) -> (Int, Int)  
f s = let a1 = sum (map fst s)  
 a2 = prod (map snd s)  
 in (a1, a2)

• Cannot implement lazy unzip with sequential  
execution semantics in a space efficient way. 
 - Noticed by John Hughes in his PhD thesis (1983) 
 - Told to me by Peter Gammie

• Pattern arises frequently in vectorised code from 
DPH. We often combine a single segment descriptor 
or selector vector with many data vectors.

Problem
Short-cut stream fusion
cannot fuse a producer
into multiple consumers

Problem’
Pull stream model does not 

support space efficient unzip

Push stream model does not 
support space efficient zip

(a pleasing* duality)
*only pleasing in theory, not in practice.

We need both Pull and Push 
(or maybe neither)

group merge

shared

• Could also do the pull first…

Stock Price Graph

xs

partition

map map

append

even

apps

[(b0,b0), (b1,b1) … (bn,bn), (a0,c0), (a1,c1) …]

Fusion is neither Associative or Commutative.

• The access pattern of the result process depends on the order
in which the source processes are fused.

• Not all orders produce a result process with an access pattern
that can be fused with successive processes.

• We don’t have a way to decide on the fusion order other than
heuristics and trying all the orders.

• Will likely cause combinatorial explosion in pathological cases.

• How do we prune the search space, session types?

