GHC on the OpenS

Ben Lippmeler

Australian National University
Haskell Implementors Workshop
2009/08/05




Project

e Funded by Sun Microsystems.

e Organised by:
- Duncan Coutts, Roman Leshchinskiy, Darryl Gove.

e Make GHC work on SPARC (again)

¢ \Why do we care?




Multicore !!!

(shared memory symmetric multi-processing)




The OpenS

¢ Released Oct 2007
e 8 cores / processor
¢ 8 threads / core

¢ 64 threads / processor

e 4 MB L2 Cache
16 way associative.

* 1165 MHz




One T2 Core

thread O

thread 1

thread 2

thread 3

thread 4

thread 5

thread 6

thread 7

ALU

ALU

FPU

LSU

L1 Cache
16 KB Instr
8 KB Data

e Hardware per core:

2 x AL
1 xXFP
1 x LS

-

(Integer + Address)
(Floating Point)
(Load Store Unit)

e 8 stage integer pipeline

¢ 12 stage floating point pipeline

e No out-of-order execution

* No exploitation of instruction
level parallelism (ILP)




One T2 Core

thread O

thread 1

thread 2

thread 3

thread 4

thread 5

thread 6

thread 7

ALU

ALU

FPU

LSU

L1 Cache
16 KB Instr
8 KB Data

e Fach thread has its own
register set.

¢ Two Instructions can be
dispatched per cycle,
each from different threads.

e Threads are intended to stall
frequently.

¢ All threads on a core share the
same L1 Cache.




Peak Instruction I1Issue rates

OpenSPARC T2

1165 MHz * 2 Instrs/core * 8 cores
= 18.64 Gig instrs / s

(in order)

Intel Core? Duo

1600 MHz * 4 instrs/core * 2 cores
= 12.80 Gig instrs / s

(out of order)




Out-of-order execution doesn’t help us much...

1ld %$10+47,

i3-12] ¢ | ots of memory traffic
13-8] => Lots of cache miss

[ %

st %g9l, [

st 512, [

1d [$10+12], %
st %gl, [$13-4]

[

[

3] * Not much ILP

i
1 (Instr Level Parallelism)
i0+12]

st 11,
add %13, -24, %9
st %g9l, 3
1d [%$10+8]7, 511

shi(slrX info), %gl

%gl, $lo(slrX 1nfo), 3%gl

%gl, [$10+4+8]

%10, 8, %10

11, 3, 39l

%gl, 0

.LclUn




Fixing the Native Code Generator

e GHC has had native code generation for
- X860
- Xx86_64
- Power PC
- SPARC
- Alpha

¢ All mashed into one module “MachCodeGen.hs”
e Support for various architectures has grown organically.

e Target architecture selected by a series of #ifdefs




#ifdef Is not my friend

#if i386 TARGET ARCH || x86 64 TARGET ARCH

getRegister (CmmMachOp mop [x])
= case mop of
#if i386 _TARGET ARCH
MO ' Neg W32 -> trivialUFCode FF32 (GNEG FF32) x
MO_F_Neg Wod -> trivialUFCode FF64 (GNEG FFo064d) x
#endif

#1f sparc TARGET ARCH
getReglster (Cmlet (CmmFloat £ W32))
= do

#1f powerpc TARGET ARCH
getReglster (CmmLoad mem pk)
| not (1sWordo64 pk)




#ifdef Is not my friend

e Hard to work on code for one platform without breaking others.
e All code for all platforms should be compiled all the time.

e Code for SPARC and PPC is now split into its own modules.

e Still need to untangle x86 from x86_64.

* Move towards being a cross-compiler, and eliminate
dependency on GCC for bootstrapping.




The Instruction class

class Instruction instr where
regUsageOflInstr :: 1nstr —-> RegUsage
patchRegsOfInstr :: 1nstr -> (Reg -> Reg) -> 1nstr

isdJumpishInstr :: 1nstr -> Bool

JumpDestsOfInstr :: instr -> [BlockId]

patchJumpInstr :: 1nstr -> (BlockId -> BRlockId)-> instr
mkJumpInstr :: BRlockId -> [instr]

mkSpillInstr :: Reg -> Int -> Int -> 1nstr
mkLoadInstr :: Reg -> Int -> Int -> 1nstr

takeDeltalnstr :: 1instr -> Maybe Int
1sMetalnstr :: i1nstr -> Bool

mkRegRegMovelInstr : ¢ Reg -> Reg —-> 1nstr
takeRegRegMovelnstr :: 1nstr -> Maybe (Reg, Req)




Benchmarking



sumeuler: runtime(s) vs number of threads

" ron 54 oo ot 3 | Embarrassingly paralle
benchmark.

¢ Use Intel processors as
the baseline.




sumeuler: runtime(s) vs number of threads

Prescott 24 1x2 3,808 Ghz 1GB ——
Heron 2x1 1.688 Ghz 2GB — |

T2 4%8 1,165 Ghz 1GB ———

T2 8x8 1,165 Ghz 32GB —— 1

e Embarrassingly parallel
benchmark.

¢ Use Intel processors as
the baseline.

e Almost linear speedup
until we run out of
hardware threads.

e No point using more
Haskell threads than
hardware threads.




sumeuler: runtime(s) vs number of threads

Y

Prescott 24 1x2 3,808 Ghz 1GB ——
Heron 2x1 1.688 Ghz 2GB — |
T2 4%8 1,165 Ghz 1GB ———
T2 8x8 1,165 Ghz 32GB —— 1

4.36 X speedu p

with 4 x the cores

e Embarrassingly parallel
benchmark.

¢ Use Intel processors as
the baseline.

e Almost linear speedup
until we run out of
hardware threads.

e No point using more
Haskell threads than
hardware threads.




sumeuler: runtime(s) vs number of threads

Y

" Prescott 24 1x2 3.808 Ghz 1GB ——

Heron 2x1 1.680 Ghz 2GB
T2 4x8 1.165 Ghz 1GB
T2 8x8 1.165 Ghz 32GB

4.36 X speedu 5*3::___::::15.

with 4 x the cores

WIN!

16

e Embarrassingly parallel
benchmark.

¢ Use Intel processors as
the baseline.

e Almost linear speedup
until we run out of
hardware threads.

e No point using more
Haskell threads than
hardware threads.




partree: runtime(s) vs number of threads

" Prescott 2M 1x2 3.808 Ghz 1GB —+—
l‘escoueron 2:1 1,600 Ghz 2GB —¢— | ° NOt Very para”el'

e Tiny speedups on Intel.




partree: runtime(s) vs number of threads

Heron 2x1 1,688 Ghz 2GB —<—

T2 8x8 1,165 Ghz 32GB —&—

" Prescott 2M 1x2 3,808 Ghz 1GB —+— |

T2 48 1,165 Ghz 1GB —#%—

e Not very parallel.
e Tiny speedups on Intel.

* No real speedup with
more than 3 threads.

e Can’t make full use of a
whole T2 core.




partree: runtime(s) vs number of threads

Heron 2x1 1.680 Ghz 2GB —<—

T2 8x8 1,165 Ghz 32GB —&—

4.91 x slowdown

more cores
won’t help

" Prescott 2H 1x2 3,808 Ghz 1GB —+—

T2 4x8 1,165 Ghz 1G6B —%— |

e Not very parallel.
e Tiny speedups on Intel.

* No real speedup with
more than 3 threads.

e Can’t make full use of a
whole T2 core.




Benchmarking Summary

If you have less

than 8 threads of work
then stay home.




Benchmarking Summary

If you have less
than 8 threads of work
then stay home.

It’s a “throughput” machine.




sumeuler: issue rate, data miss rate (Gig/s) vs time(s)
-N32 -No64

thread O

I|I IIII !I I||n I IIII IIJIIIIII II'I III!III IIIIIIIIIIIIII
I ll n I l n . e

thread 63 |

[y
N

[
@

Issue rate (Gig/s)
data miss rate




matmult: issue rate, data miss rate (Gig/s) vs time(s)

¢ Periods of high and
low parallelism.

¢ | arge variation
run-to-run.

® [hreads spend time
blocked at join
points?

e Can ThreadScope
help debug this?

@ B N W LH g O~ R




What next”?

¢ \\We need more satisfying benchmarks.
¢ \Ve haven’t had 64 hardware threads before.
e Use ThreadScope to determine why matmult is behaving badly.

e Some simple compile-time instruction reordering could help.
- No out-of-order execution => pipeline stalls.

e Keep the build working!!




More Info at:

http://ghcsparc.blogspot.com



http://ghcsparc.blogspot.com
http://ghcsparc.blogspot.com

