
An AMPLE Implementation

Ben Lippmeier and Clem Baker-Finch

Department of Computer Science
Australian National University, Canberra, ACT 0200, Australia
Ben.Lippmeier@anu.edu.au, Clem.Baker-Finch@anu.edu.au

Abstract. Ample is an Abstract Machine for Parallel Lazy Evaluation.
Ample was created as an experimental environment in which to study
the behaviour of lazy functional programs when running on parallel ma-
chines with various characteristics. Ample is designed to be highly con-
figurable and all configuration parameters may be set interactively. This
configuration extends to the number of processors in the machine, the
communication latency and the method used for spawning and unblock-
ing threads. Ample includes tools to generate graphs of profiling data
and allows program execution to be traced step by step. Ample has been
written entirely in Haskell and has been constructed in a modular way.
Ample is intended to be modified by end users in order to investigate
their own machine designs.

1 Introduction

During the design of a system for parallel evaluation it is useful to profile the
performance of several archetypal programs. This is done in order to determine
whether the decisions taken at design time will lead to the efficient execution
of programs once the system has been implemented. Unfortunately, profiling
support is usually something which is added after large parts of a system have
already been implemented. Although it may be possible to hand-evaluate trivial
programs at design time, answering seemingly straight forward questions such
as “How many processors can this program make use of?” is surprisingly hard
to do without having access to a good run-time profiler. [5]

One possibility is to make use of an abstract machine in order to profile small
programs and test out ideas. By using an abstract machine, important questions
regarding the behaviour of a system may be answered without having to build
a native implementation. Compared to a native implementation, it is also easier
to modify an abstract machine as the design changes and to reason about how
it operates.

Ample implements the parallel lazy abstract machine described in [1]. This
machine is based on the operational semantics for parallel lazy evaluation given in
[2] as well as Sestoft’s derivation of a (sequential) lazy abstract machine [6]. These
are SECD style environment machines which incorporate a model of parallelism
consisting of a pool of threads that communicate via a common heap.

Two versions of Ample have been implemented, based on Sestoft’s Mark-1
and Mark-3 machines respectively. The Mark-1 machine uses direct substitution

to perform function application whereas the Mark-3 machine uses a separate
environment to model this substitution. The two versions accept a similar source
language which differs only in details specific to the abstract machine used. This
paper focuses on the version based on Sestoft’s Mark-3 machine.

Ample implements three different execution modes: single threaded, fully
speculative and explicitly parallel. In the single threaded mode a sole thread ex-
ists and reductions are performed in a sequential manner. In the fully speculative
mode one thread evaluates the function body while a new thread is created to
evaluate the argument. In the explicitly parallel mode parallelism is controlled
with the par and seq combinators in a manner similar to GpH [7].

Ample allows configuration parameters to be tuned interactively. This config-
uration extends to the number of processors in the machine, the communication
latency and the method used for spawning and unblocking threads. Ample also
provides a rich set of profiling tools that can be used to study the effect that
these parameters have on the run-time behaviour of the machine.

Ample has been written entirely in Haskell and has been constructed in a
modular way. This modularity is intended to allow the user to modify Ample
to meet their own requirements.

2 Core language

Ample accepts programs written in a small lazy functional language. This lan-
guage is based on the untyped lambda calculus, augmented with mutually recur-
sive let-bindings, integers, constructors and the par and seq combinators. An
abbreviated syntax for this language is shown in figure 1. The Ample compiler
translates program source into the Ample core language by converting it to
the normalized lambda calculus while replacing variable names with de Bruijn
indices as per Sestoft’s Mark-3 machine. The compiler also builds environment
trimmers for let expressions and constructors [6].

At run-time the program exists as a graph of ‘cells’ which are stored in a
static heap. Each cell is referenced by its offset (pointer) into the heap and the
edges of the graph are represented by including these pointers in its cells.

e = λx . e | e1 e2 | x
| let { xi yi = ei } in e
| n | e1 op e2
| Ci yi | case e of { Ci yi → ei }
| e1 par e2 | e1 seq e2

Fig. 1. abbreviated syntax for the Ample source language

3 The AMPLE abstract machine

The Ample abstract machine is a combination of Sestoft’s Mark-3 machine [6]
and the Parallel Lazy Abstract Machine described in [1]. The machine is defined
by a set of state transition rules, the full set of which is given in the appendix.
In single threaded mode the machine operates as per Sestoft’s Mark-3 machine
and the two parallel modes are defined by modifying the set of rules for single
threaded mode.

3.1 Sestoft’s Mark-3 machine

Sestoft’s Mark-3 machine of consists of a control C, an environment E, a stack
S and a heap H.

The control holds the sub-expression currently being evaluated. In the Ample
machine the control is a pointer to one of the program cells described in the
previous section. Each cell represents one node of the program graph. In this
configuration the control is equivalent to the program counter in an imperative
machine.

The environment eliminates the need to modify the live program during
β-reduction, as is done by Sestoft’s Mark-1 machine. In the Mark-3 machine the
environment is a stack of heap pointers p. Where the Mark-1 machine would
perform the direct substitution e[y/x], modifying the original expression e, the
Mark-3 machine inserts y together with a copy of its associated environment
into the heap. The resulting heap pointer is then added to the environment for
e. At compile time each named variable x is replaced by an integer offset into
the environment – so that when the machine requires the value of that variable
it can be obtained by following the associated heap pointer.

The heap now maps pointers p onto closures (e, E) which represent the result
of substituting values referenced by the environment E into the expression e.

The stack represents the context of the evaluation. For example, to evaluate
an application e x the corresponding heap pointer px is pushed onto the stack
before proceeding to evaluate e to an abstraction λe′. At this point p will be
available on the top of the stack and will be ’substituted’ into e′ by adding
it to the current environment. In a similar fashion the stack will hold the case
alternatives while a case object is being evaluated, as well as the second argument
of seq during the evaluation of the first.

The stack may also contain update markers. When the machine arrives at a
variable x an update marker for the associated heap pointer #px is pushed onto
the stack. The closure at px is then evaluated to whnf, after which the marker
indicates that the heap should be updated with this result.

3.2 Parallel evaluation

Ample uses a model of parallelism that consists of a set of threads which com-
municate via a common heap. Each thread contains its own control, environment

and stack and is labeled with an index t. The transition rules for the appropri-
ate evaluation mode are applied to each thread separately and a given thread
becomes inactive when no rule applies. The transition rules are given in the
appendix.

3.3 Fully speculative evaluation

In fully speculative mode the evaluation of an application e1 x proceeds by eval-
uating both e1 and the closure referenced by x in parallel. As per the fs-app1

rule, the parent thread t pushes px onto it’s stack and continues with the eval-
uation of e1. A new thread t′ is created which commences evaluation of the
closure to whnf and will update the heap once finished. The heap element at px
is overwritten with a blackhole • to indicate that this closure is presently being
evaluated. The pe-var1 rule, which also evaluates a closure to whnf, exhibits
similar behaviour.

If another thread requires the value of a closure that is presently being eval-
uated then that thread will be blocked. Blocking is handled by the pe-var2 rule
which sets the thread’s control to the blocked state 2 and appends it’s index
to the associated blocking queue. When the evaluation of a closure is complete
the pe-var3 writes it’s value back to the heap as well as unblocking any threads
that were waiting for it.

One final rule fs-app3 is required so that for an application e1x, if the closure
referenced by x is already being evaluated then no new thread is created.

The evaluation of a program in fully speculative mode results in the creation of
many fine-grained threads which quickly become blocked. Although impractical
as far as a ‘real’ implementation is concerned, when a program is evaluated in
fully speculative mode with the communication latency set to zero it’s speedup
relative to the sequential mode is constrained only its inherent data dependen-
cies. This is useful for determining an upper limit to the amount of parallelism
which can be gained from a particular program.

3.4 Explicitly parallel evaluation

In explicitly parallel mode threads are created with the par combinator. The
expression e1 par e2 causes a new thread to be created which evaluates the
closure for e1 in parallel with e2. In the ‘mostly-implicit’ parallelism offered by
GpH the reduction of e1 par e2 merely records that e1 may be evaluated in
parallel. This operation is called sparking and the job of determining when, if
ever, to create an actual thread for e1 is left to the run-time system.

In contrast, the Ample machine always creates a new thread. All threads
which are not presently blocked are members of the runnable pool. For each
machine step, the scheduler chooses n threads from this runnable pool – where
n represents the number of processors in the machine. These threads form the
list of active threads, and the state transition rules are applied to these threads
only.

Expressions of the form e1 par e2 are handled by the par-app1 rule who’s
operation is similar to that of fs-app1. The par-app2 rule performs the same
role as fs-app3 in preventing a new thread from being created when the associ-
ated closure is already being evaluated.

3.5 Thread synchronisation

If one were to implement an abstract machine for single threaded evaluation then
the natural way of expressing the reduction rules would be to make use of the
pattern matching mechanism provided by a standard functional language. Each
rule would be a pattern for a function, probably called reduce, which matches
on the appropriate machine state and returns an updated state.

reduce :: (Control, Env, Stack, Heap)

-> (Control, Env, Stack, Heap)

Unfortunately, this straight forward implementation is not as useful when ap-
plied to a machine consisting of a set of threads – each with its own control,
environment and stack – which communicate via a common heap or otherwise
affect the global machine state. In the definition of the Parallel Lazy Abstract
Machine given in [1] the fs-union rule is used to combine the effects of all reduc-
tions performed during a given computation step. When implementing this rule
it is important to ensure that the effect each thread has on the global machine
state is not visible to other threads until the beginning of the next step. This
behaviour must be enforced in order to preserve causality between steps.

To achieve this we must somehow separate the aspects of the reduction which
are local to a specific thread from the aspects that are global in nature. The
challenge is to maintain the simplicity of the original reduce function while
avoiding the introduction of low level details that are beyond the scope of an
abstract machine. One option that we certainly don’t want to entertain is to
keep a separate instance of the global machine state for each thread and then
somehow combine them all at the end of the step.

In separating the local and global aspects of a reduction it is important to
ensure that the atomic nature of the original rule is preserved. An example of
what would happen if this property were violated can be derived by inspecting
the pe-var1 and pe-var2 rules shown in section 2 of the appendix.

These two rules overlap in all parameters of the local thread state. When a
thread arrives at this state the determination of whether it should be reduced via
pe-var1 or pe-var2 can only be made after inspecting the appropriate element
in the heap.

It is critical that other threads do not modify this heap element during the
reduction. Consider the following sequence of events,

1. Thread A reads the heap element at px, sees a black-hole and deter-
mines that another thread is in the process of evaluating that closure.

2. Thread B, which had been evaluating the closure at px, finishes its
computation and updates the heap. This causes all threads present
in the blocking queue at px to be unblocked.

3. Thread A, thinking that px is still unevaluated, writes a black-hole
back into the heap along with the original blocking queue, with its
own index at the front.

This behaviour is clearly incorrect. Depending on the specific program, either
the closure at px will be re-evaluated or thread A will never be unblocked. The
root of the problem is that pe-var1 and pe-var2 are atomic operations and
must be treated as such.

Message passing With this in mind, one way of solving the problem would
be for the thread to send a message which invokes an atomic operation on the
heap. On arriving at a state as per pe-var1 / pe-var2 the thread would send
the following message,

if the heap element at px is a closure
then overwrite it with a black-hole and send back the closure.

else if the heap element at px is a black-hole
then add the thread index t to the blocking queue and send back

a token indicating that this was the action taken.

else no rule applies, send back an error token.

The thread would then inspect the return message to determine how to proceed
with the reduction.

Although this method ensures that reductions are implemented as atomic opera-
tions, the abstract nature of the machine has been spoilt. In the message passing
model a specific reduction must be broken down into two distinct stages, one
before the heap access and one after. This destroys the simplicity of the original
reduce function.

Staggered update The approach taken in Ample is to modify the original
reduce function so that any modifications that would otherwise be made to the
global machine state are deferred until all threads have been reduced.

With this approach reduce retains its original form, with the addition of a
list of reduction modifications which describe the effects that the reduction has
on the global state.

reduce :: (Control, Stack, Env, Heap)

-> (Control, Stack, Env, Heap, [ReduceMod])

Only after reduce has been applied to all active threads are the resulting re-
duction modifications applied to the global state. An exception lies in the let

rule which must make two separate accesses to the heap – one to reserve heap
elements for each of the bindings and one to update the elements with closures
for these bindings. This is necessary because the closures for recursive bindings
reference each other so their associated heap pointers must be known before
they can be constructed. As the mere reservation of heap elements provides no
information to other threads this operation can be performed during reduce.
Updating the elements with closures is still performed using reduction modifica-
tions.

This scheme results in the required machine behaviour, provided the reduc-
tion modifications are applied in a certain order. Heap updates must be per-
formed first, followed by additions to the blocking queues, followed by unblocking
and removal from the blocking queues, followed by the spawning of new threads.
These modifications are labeled Update, Block, Unblock and Spawn respectively.

3.6 Parameterisation of the abstract machine

Once the reduce function has been applied to all active threads the resulting
list of reduction modifications is broken down into its component types. Al-
though the Update and Block modifications must be applied immediately, the
Unblock and Spawn modifications may be written to a queue in order to delay
their application. By setting the number of steps that these modifications must
spend in the queue before they are applied, a model of communication latency
is introduced into the machine.

Greiner and Blelloch note that several parallel functional language imple-
mentations reactivate blocked threads sequentially. As a consequence, apparently
parallel programs can degrade to effectively sequential performance [3]. By set-
ting the delays for the Unblock and Spawn queues appropriately, this and other
behaviours may be studied.

Ample also allows the number of active threads to be limited to a maximum
value. Doing this simulates a machine with a finite number of processors. Differ-
ent methods for scheduling the pool of runnable threads among these processors
may also be studied.

4 Profiling

Step counting Ample keeps track of the number of steps performed vs the
number of times each reduction rule was applied. This information can be used to
determine the speedup of a parallel program compared to its sequential version.

Ample also counts the number of steps that each thread spent blocked as
well as the number of steps during which all non-idle threads were blocked. This
last figure represents time that the machine spent with no work to perform as it
was waiting for internal communication to complete. As such, time spent in this
state may indicate that the parallelism was too fine-grained compared to the
latency of the machine or that the run-time system was over-eager in creating
new threads. Figure 4 shows an example where this is the case.

Thread activity A thread activity plot shows the state each thread was in
throughout the reduction. In this paper the states are indicated with a thick
line, a medium line, a thin line and no line for steps that a thread spent ac-
tive, runnable but not active, blocked and inactive respectively. Plots generated
interactively are shown with the states colour coded.

When a thread finishes a unit of work it transitions from the active to the
inactive state. Before doing this it writes its result back to the heap which
causes all threads waiting on that result to be to be unblocked. When working
with smaller expressions it is possible to use the thread activity plot to see how
a given thread unblocks others. After doing this the user can instruct Ample to
trace the reduction around that point in order to determine exactly what part
of the expression was being evaluated.

Thread count The thread count plot shows how many threads were in each
state for each step of the reduction. The thread count plot has the same profile
as the thread activity plot but is more useful for gaining insight into exactly how
many machine resources were being used.

Length of the spawn and unblocking queues The length of the spawn
queue corresponds to the number of threads that have been created but are
waiting to be added to the runnable pool. The length of the unblock queue
corresponds to the number of Unblock modifications that have been generated
but are waiting to be applied. In a low latency machine each of these plots will
appear as a series of impulses, as these modifications are applied soon after they
are created. In a high latency machine each element will remain in the queue for
longer and new elements will tend to pile on top of old ones.

Heap usage A plot of heap usage and the number of allocations performed at
each step can be used as an indication of how much work the machine is doing.
It is also possible to instruct Ample perform a garbage collection after each
step, producing a plot of the number of active heap elements at each stage of
the reduction. This is a good way of testing code transformations designed to
save heap space.

5 Examples

5.1 Fully speculative evaluation

Figure 2 shows the machine profile when evaluating the first five prime numbers
using the Sieve of Eratosthenes. The expression evaluated was print (take 5

primes) where the source for primes is shown in figure 3 and take is defined in
the usual way. For this evaluation the number of active threads was limited to
four and the communication latency was set to zero.

Thread Activity

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0 200 400 600 800 1000 1200 1400

Thread Count

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 0 200 400 600 800 1000 1200 1400

Fig. 2. Profile of the evaluation of (take 5 primes) in fully speculative mode

primes = primes’ $ from positiveInts 2;

primes’ xx = case xx of { (x:xs) -> x : primes’ (sieve x xs); };

sieve n xx =

case xx of {

[] -> [];

(x:xs) -> if x % n == 0 then sieve n xs

else x : sieve n xs; };

Fig. 3. Ample source for the primes function

The evaluation is driven by the print function which prints out the elements
of the list one at a time. print makes use of the seq combinator to ensure
that characters are output in the correct order. This results in obvious peaks
in machine activity, corresponding to the nth prime number being evaluated,
interspersed by periods of low activity when the values are printed out.

At the beginning of each iteration many threads are created. Although most
of these threads become blocked straight away, the threads that finish their work
become inactive and their indices are re-used. The visual activity in rows three
and six in the thread count plot are the result of this behaviour. The alternative
would be to increment the thread index for each new thread created, in a manner
similar to GranSim’s ‘per-thread activity profile’ [4], although this approach
would become unwieldly with such a large number of fine grain threads.

Figure 5 shows a tally of how many times each reduction rule was invoked
during the evaluation. Somewhat surprisingly, the rule used most frequently is
pe-var3/Cnstr which updates the heap with a construct. On the other hand,
the fact that the vast majority of reductions represent the ‘overhead’ of lazy
evaluation – as opposed to operations on base types – is less surprising.

5.2 Explicitly parallel evaluation

Figure 4 shows the machine profile when evaluating an expression that inserts
a list of elements into a binary tree and then determines the size of that tree.
The expression evaluated was (parTreeSize tree) where the source for both
parTreeSize and tree is shown in figure 6. Although the tree is constructed in a
sequential manner, parTreeSize creates a new thread to determine the number
of elements in each branch. In this example 23 elements are inserted into the
tree, though they are not all shown in the source. The communication latency
has been set to 100 cycles.

As little work is done at the nodes of the tree the threads created for each
branch quickly become blocked. From the profile we see that in the final stages
of the reduction the number of active threads alternates between one and zero.
This corresponds to the period where the sub-counts for each branch of the
tree propagate back up to the main thread. As the threads corresponding to
branches higher up in the tree have been blocked while waiting for lower threads
to complete this information is carried by the machines unblocking mechanism.
It takes 100 cycles for each of these values to be communicated and while this
communication is taking place there is no other work to be done. This causes
the number of active threads to fall to zero.

6 Related Work

The GranSim series of profilers are run-time profilers for Glasgow Parallel
Haskell (GpH) [4] [5]. GpH is a mostly-implicit parallel extension of Haskell98
and makes use of the Glasgow Haskell Compiler (GHC) for the front end compila-
tion while providing a new parallel run-time system named GUM [8]. GranSim

Thread Activity

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 1000 2000 3000 4000 5000 6000 7000 8000

Thread Count

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1000 2000 3000 4000 5000 6000 7000 8000

Spawn Queue Length

 0

 1

 2

 3

 0 1000 2000 3000 4000 5000 6000 7000 8000

Unblock Queue Length

 0

 1

 2

 3

 0 1000 2000 3000 4000 5000 6000 7000 8000

Fig. 4. Profile of the evaulation of (parTreeSize tree) with communication latency
set to 100 cycles

Rule n % Rule n %

pe-var3/Cnstr 450 0.17 prim/intEq 25 0.01
pe-var1 338 0.13 seqPush 19 0.01
app2 273 0.10 seqEval/Cnstr 19 0.01
stop 272 0.10 prim/intMod 16 0.01
fs-app1 271 0.10 prim/intAdd 11
case1 233 0.09 const/char 10
case2/match 232 0.09 print/char 10
pe-var3/Lambda 159 0.06 prim/intSub 7
let 139 0.05 print/int 5
pe-var2 68 0.03 pe-app3 2
const/int 47 0.02 case2/default 1

Fig. 5. Tally of the number of times each reduction rule was taken during the evaluation
of (take 5 primes)

treeInsert tree iKeyVal =

case iKeyVal of {

(iKey, iVal) ->

case tree of {

[] -> (iKey, iVal, [], []);

(key, val, left, right) ->

if iKey == key then KeyExists

else if iKey < key then

(key, val, treeInsert left iKeyVal, right)

else (key, val, left, treeInsert right iKeyVal); }; };

parTreeSize tree =

case tree of {

[] -> 0;

(key, val, left, right) ->

let {

sizeLeft = parTreeSize left;

sizeRight = parTreeSize right;

} in

sizeLeft par (sizeRight par (1 + sizeLeft + sizeRight)); };

elements = ["perch", "barb", "tetra", "discus" ...]

elementIxs = [5, 10, 4, 3 ...]

tree = foldl treeInsert [] (zip elements elementIxs)

Fig. 6. Ample source for the parTreeSize and tree functions

comes in a number of flavours including GranSim-Lite which can be used to
simulate an idealised machine with infinite processors and no communication
cost.

The primary benefit that Ample has over GranSim and other such systems
is that being an abstract machine, Ample it is much easier to modify and reason
about. On the other hand, low level aspects such as graph packing techniques
and caching strategies are beyond the scope of an abstract machine and are best
left for such a system.

7 Conclusion

When working with an abstract machine, design ideas can be experimented with
without the overhead of building a complete language implementation. We have
seen that the careful analysis of the state transition rules given in [1] and [6]
has resulted in a modular system which provides useful information for small
functions. Future work on Ample would allow the reduction rules take different
numbers of steps so that machine behaviour closer to a native implementation
could be simulated. Ample could also serve as the basis for an abstract machine
for distributed processing. In such a machine, processing elements would consist
of separate instances of the Ample abstract machine, connected by their existing
IO mechanism.

References

1. Clem Baker-Finch. Parallel lazy abstract machines. In Proceedings of the First
Scottish Functional Programming Workshop, pages 33–42, 1999.

2. Clem Baker-Finch, David King, and Phil Trinder. An operational semantics for
parallel lazy evaluation. In ACM-SIGPLAN International Conference on Functional
Programming (ICFP’00), pages 162–173. ACM, 2000.

3. John Greiner and Guy Blelloch. A provably time-efficient parallel implementation
of full speculation. In Proceedings of the 23rd ACM Symposium on Principles of
Programming Languages, pages 309–321, January 1996.

4. King D. J., Hall J. G., and Trinder P. W. A strategic profiler for Glasgow Parallel
Haskell (GpH). In Proceedings of the 10th Int. Workshop on Implementation of
Functional Languages, pages 90–104, September 1998.

5. Hans-Wolfgang Loidl. Granularity in Large-Scale Parallel Functional Programming.
PhD thesis, Department of Computing Science, University of Glasgow, March 1998.

6. Peter Sestoft. Deriving a lazy abstract machine. Journal of Functional Program-
ming, 7(3):231–264, May 1997.

7. Philip W. Trinder, Kevin Hammond, Hans-Wolfgang Loidl, and Simon L. Peyton
Jones. Algorithm + Strategy = Parallelism. Journal of Functional Programming,
8(1):23–60, January 1998.

8. Philip W. Trinder, Kevin Hammond, James S. Mattson Jr., Andrew S. Partridge,
and Simon L. Peyton Jones. GUM: a portable implementation of Haskell. In Interna-
tional Workshop on the Implementation of Functional Languages, Bastad, Sweden,
September 1995.

A AMPLE Reduction Rules

A.1 Rules for single threaded evaluation

app1

(ExpVar e x, [..., px, ...], S) H
⇒ (e, [..., px, ...], px: S) H

app2

(Lambda e, E, px: S) H
⇒ (e, px: E, S) H

var1 (enter)

(Var x, [..., px, ...], S) H [px→ (e’, E’)]
⇒ (e, E’, #px: S) H

var2 (update)

(whnf, E, #p : S) H
⇒ (whnf, E, S) H [p → (whnf, E’)]

where E = [p0, ... pa, ... pn]

E’ = [p0, . . . pa . . . pn], when whnf = Lambda e
| [p0, . . . pa], when whnf = Cnstr m a

let

(Let [(bi, ti)] e0 t0, E, S) H
⇒ (e0, E’ | t0, S) H [pi → bi, E’ | ti]

where E’ = [pn, ... p1] ++ E

case1

(Case (e, t) alts, E, S) H
⇒ (e, E, (alts, E | t) : S) H

case2

(Cnstr namei ai, [p1, ... pa, ... pn], (alts, E) : S) H
⇒ (ei, ([pi, ... pa] ++ E) | ti, S) H

seqPush

(Seq e1 e2, E, S) H
⇒ (e1, E, (SSeq e2 E) : S) H

seqEval

(whnf, E, (SSeq e2 E’) : S) H
⇒ (e2, E’, S) H

constant{Int|Char}

({Int|Char} v, E, S) H
⇒ ({RetInt|RetChar}, {TagInt|TagChar} : v : E, S) H

print{Int|Char}

(PrimFunc ”print”, {TagInt|TagChar} : v : E, S) H
⇒ (Cnstr ”Done” 0, E, S) H

prim intAdd

(PrimFunc IntAdd, TagInt : n1 : TagInt : n2 : E, S) H
⇒ (RetInt, TagInt : (n1 + n2) : E, S) H

prim intEq

(PrimFunc IntEq, TagInt : n1 : TagInt : n2 : E, S) H
⇒ (Cnstr name 0, E, S) H

where name = ”True” | ”False”

A.2 Modifications for parallel evaluation

pe-var1 (enter)

(Var x, [..., px, ...], S) H [px→ (e, E)]
⇒ (e, E, #px: S) H [px→• []]

pe-var2 (block)

(Var x, [..., px, ...], S) H [px→• ts]
⇒ (2, [], S) H [px→• t:ts]

pe-var3 (unblock)

(whnf, [... px, ...], #px: S) H [px→• [t1,...tn]]
{(2, [], Si)i }

⇒ (whnf, [... px, ...], S) H [px→ (whnf, [... px, ...]) []]
{(whnf, [... px, ...], Si)i }

where i = [t1, ... tn]

A.3 Modifications for fully speculative evaulation

fs-app1 (spawn)

(ExpVar e1 x, [..., px, ...], S) t H [px→ (e2, E2)]

⇒ (e1, [..., px, ...], px: S) t H [px→• []]
(e2, E2, [#px]) t′

where t’ is fresh

fs-app3

(ExpVar e x, [..., px, ...], S) H [px→• ts]
⇒ (e, [..., px, ...], px: S) H

A.4 Modifications for par-seq Evaluation

par-app1 (spawn)

(Par x e1, [..., px, ...], S) t H [px→ (e2, E2)]

⇒ (e1, [..., px, ...], px: S) t H [px→• []]
(e2, E2, [#px]) t′

where t’ is fresh

par-app2

(Par x e1, E, S) H [px→• []]
⇒ (e1, E, S) H

